Open position for: Marie Skłodowska-Curie PhD position at the Laboratory of Human Neural Stem Cells (Center of Molecular Biology “Severo Ochoa” and Autonomous University of Madrid)

TITLE: “Improving reproducibility of cerebral organoids to study neurological disorders”

CONTRACT: PhD scholarship at the Laboratory of Human Neural Stem Cells, Department of Molecular Neuropathology (Center of Molecular Biology “Severo Ochoa”, CBMSO), and Department of Molecular Biology (Autonomous University of Madrid, UAM). Start date during March 2019

Closing date for receipt of applications: December 1 2018

Job Summary

Applications are invited from suitably qualified candidates for a position funded by the Marie Skłodowska-Curie project “ASCTN-Training” within the Horizon 2020 Programme of the European Union, starting latest March 1st, 2019. The appointment will be on a temporary basis for a maximum period of 3 years (PhD student) and will be placed at the Department of Molecular Neuropathology (Center of Molecular Biology “Severo Ochoa”, CBMSO), and Department of Molecular Biology (Autonomous University of Madrid, UAM) (Madrid, Spain)

ASCTN-Training is a four-year project, funded by the European Union Horizon 2020 Programme (H2020-MSCA-ITN-2018) under the Marie Skłodowska-Curie Innovative Training Network and Grant Agreement No. 813851. ASCTN-Training is addressing existing gaps within Human Stem Cell-based Neuronal disorders (NDs) Modelling (NDM) for research to develop new medicines for the treatment of neurological disorders (e.g. Parkinson’s (PD), Huntington’s (HD) and Demyelination’s (DM) diseases), which occur as a result of acute or progressive loss of cells, glial or neuronal, and structures and function in the brain. ASCTN-Training sets out with the ambition to educate and train students within and across different scientific disciplines: biotechnology (Human Pluripotent Stem Cells (hPSCs) neuronal and glial differentiation using brain-on-chip technology and microfluidics, 3D tissue engineering/cerebral organoids and nano-engineering of culture conditions), molecular biology (Ex vivo gene expression, Direct cellular reprogramming, mouse genetic modification, single cell analysis), In vivo mouse manipulations (Animal models of NDs, stem cell transplants into the brain, scaffold implantation, direct tissue engineering).