Cabecera 2 940 CBMSO CSIC UAM

Sunday, 23rd September 2018
Cell Biology and Immunology

Biogenesis and function of mitochondria and its role in pathology


Grupo-400

 


José M. Cuezva

ASciStaff

APublications

Research summary:

Mitochondria play key roles in metabolism, the execution of cell death and intracellular signaling. Consistent with the prime physiological roles of mitochondria its dysfunction is involved in the genesis and progression of ageing and of a plethora of pathologies including cancer and neurodegeneration. The mitochondrial ATP synthase is a key transducer in energy conservation and in signaling, in shaping the structure of cristae and in the execution of death. Previously, we have documented that the expression of the ATP synthase is partially repressed in human carcinomas providing a “bioenergetic signature” of disease progression. More recently, we have described that its inhibitor, the ATPase Inhibitory Factor 1 (IF1), is highly overexpressed in most prevalent carcinomas and demonstrated that it plays a prominent role in metabolic reprogramming of tumor cells and during differentiation of stem cells. Moreover, the IF1-mediated inhibition of the ATP synthase triggers a ROS signal that promotes the activation of nuclear programs aimed at cell survival. We have developed transgenic mice that conditionally express IF1 in neurons, hepatocytes, intestinal epithelium or heart and demonstrated in vivo the role of IF1 in metabolic reprograming and nuclear signaling “mitohormetic” responses, including the mechanisms by which IF1 overexpression promotes a pro-oncogenic phenotype in liver (Fig. 1). Furthermore, we have succeeded in the generation of the ATPIF1 lox/lox mice for the development of IF1-KO mice in different tissues and demonstrated that the binding of IF1 to the ATP synthase, which promotes the inhibition of the enzyme in hypoxia, cell cycle and in cancer, is regulated by the activity of a mitochondrial cAMP-dependent protein kinase (Fig. 2). Hence, IF1 is a most relevant mitochondrial protein that defines the cellular phenotype. Our main objective is to deepen into the knowledge of the cellular biology of IF1 and of its implication in cancer, neuronal function and in ageing.

figure1

Fig. 1: The overexpression of human IF1 in mouse liver increased DEN-induced hepatocarcinogenesis (Taken from Oncotarget (2016) 7,490-508).

 

figure2

Fig. 2: Phosphorylation of IF1 inactivates its inhibitory activity by preventing its binding to the ATP synthase to regulate cellular energy metabolism (Taken from Biochim. Biophys. Acta (2016) 1857,1167-1182).

 


 

Publications:

  • Esparza-Moltó PB, Cuezva JM. The Role of Mitochondrial H(+)-ATP Synthase in Cancer. Front Oncol. 2018;8:53.
  • Goldberg J, Currais A, Prior M, Fischer W, Chiruta C, Ratliff E, Daugherty D, Dargusch R, Finley K, Esparza-Moltó PB, Cuezva JM, Maher P, Petrascheck M, Schubert D. The mitochondrial ATP synthase is a shared drug target for aging and dementia. Aging Cell. 2018 Apr;17(2).
  • Formentini L, Santacatterina F, Núñez de Arenas C, Stamatakis K, López-Martínez D, Logan A, Fresno M, Smits R, Murphy MP, Cuezva JM. Mitochondrial ROS Production Protects the Intestine from Inflammation through Functional M2 Macrophage Polarization. Cell Rep. 2017;19:1202-1213.
  • Formentini L, Ryan AJ, Gálvez-Santisteban M, Carter L, Taub P,Lapek JD Jr,Gonzalez DJ, Villarreal F, Ciaraldi TP, Cuezva JM, Henry RR. Mitochondrial H(+)-ATP synthase in human skeletal muscle: contribution to dyslipidaemia and insulin resistance. Diabetologia. 2017;60:2052-2065.
  • Esparza-Moltó PB, Nuevo-Tapioles C, Cuezva JM. Regulation of the H(+)-ATP synthase by IF1: a role in mitohormesis. Cell Mol Life Sci. 2017;74:2151-2166.
  • Santacatterina F, Sánchez-Cenizo L, Formentini L, Mobasher MA, Casas E, Rueda CB, Martínez-Reyes I, Núñez de Arenas C, García-Bermúdez J, Zapata JM, Sánchez-Aragó M, Satrústegui J, Valverde ÁM, Cuezva JM. Down-regulation of oxidative phosphorylation in the liver by expression of the ATPase inhibitory factor 1 induces a tumor-promoter metabolic state. Oncotarget. 2016 ;7:490-508.
  • García-Bermúdez J, Sánchez-Aragó M, Soldevilla B, Del Arco A, Nuevo-Tapioles C, Cuezva JM. PKA Phosphorylates the ATPase Inhibitory Factor 1 and Inactivates Its Capacity to Bind and Inhibit the Mitochondrial H(+)-ATP Synthase. CellRep. 2015;12:2143-55.
  • Formentini L, Pereira MP, Sánchez-Cenizo L, Santacatterina F, Lucas JJ, Navarro C, Martínez-Serrano A, Cuezva JM. In vivo inhibition of the mitochondrial H+-ATP synthase in neurons promotes metabolic preconditioning. EMBO J. 2014 ;33:762-78.
  • Sánchez-Aragó M, García-Bermúdez J, Martínez-Reyes I, Santacatterina F, Cuezva JM. Degradation of IF1 controls energy metabolism during osteogenic differentiation of stem cells. EMBO Rep. 2013 ;14:638-44.
  • Sánchez-Aragó M, Formentini L, Martínez-Reyes I, García-Bermudez J, Santacatterina F, Sánchez-Cenizo L, Willers IM, Aldea M, Nájera L, Juarránz A, López EC, Clofent J, Navarro C, Espinosa E, Cuezva JM. Expression, regulation and clinical relevance of the ATPase inhibitory factor 1 in human cancers. Oncogenesis. 2013;2:e46.
  • Formentini L, Sánchez-Aragó M, Sánchez-Cenizo L, Cuezva JM. The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response. Mol Cell. 2012;45:731-42.
  • Ortega AD, Willers IM, Sala S, Cuezva JM. Human G3BP1 interacts with beta-F1-ATPase mRNA and inhibits its translation. J Cell Sci. 2010;123(Pt 16):2685-96.
  • Sánchez-Cenizo L, Formentini L, Aldea M, Ortega AD, García-Huerta P, Sánchez-Aragó M, Cuezva JM. Up-regulation of the ATPase inhibitory factor 1 (IF1) of the mitochondrial H+-ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype. J Biol Chem. 2010;285:25308-13.
  • Sánchez-Aragó M, Chamorro M, Cuezva JM. Selection of cancer cells with repressed mitochondria triggers colon cancer progression. Carcinogenesis. 2010;31:567-76.
  • Cuezva JM, Ortega AD, Willers I, Sánchez-Cenizo L, Aldea M, Sánchez-Aragó M. The tumor suppressor function of mitochondria: translation into the clinics. Biochim Biophys Acta. 2009;1792:1145-58.
  • López-Ríos F, Sánchez-Aragó M, García-García E, Ortega AD, Berrendero JR, Pozo-Rodríguez F, López-Encuentra A, Ballestín C, Cuezva JM. Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res. 2007;67:9013-7.
  • Santamaría G, Martínez-Diez M, Fabregat I, Cuezva JM. Efficient execution of cell death in non-glycolytic cells requires the generation of ROS controlled by the activity of mitochondrial H+-ATP synthase. Carcinogenesis. 2006;27:925-35.
  • Isidoro A, Casado E, Redondo A, Acebo P, Espinosa E, Alonso AM, Cejas P, Hardisson D, Fresno Vara JA, Belda-Iniesta C, González-Barón M, Cuezva JM. Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis. 2005;26:2095-104.
  • Cuezva JM, Chen G, Alonso AM, Isidoro A, Misek DE, Hanash SM, Beer DG. The bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis. Carcinogenesis. 2004;25:1157-63.
  • Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaría G, Kim H, Zapata JM, Marusawa H, Chamorro M, Reed JC. The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res. 2002;62:6674-81.
  • de Heredia ML, Izquierdo JM, Cuezva JM. A conserved mechanism for controlling the translation of beta-F1-ATPase mRNA between the fetal liver and cancer cells. J Biol Chem. 2000;275:7430-7.
  • Izquierdo JM, Cuezva JM. Control of the translational efficiency of beta-F1-ATPase mRNA depends on the regulation of a protein that binds the 3' untranslated region of the mRNA. Mol Cell Biol. 1997;17:5255-68.
  • Lithgow T, Cuezva JM, Silver PA. Highways for protein delivery to the mitochondria. Trends Biochem Sci. 1997;22:110-3.
  • Izquierdo JM, Ricart J, Ostronoff LK, Egea G, Cuezva JM. Changing patterns of transcriptional and post-transcriptional control of beta-F1-ATPase gene expression during mitochondrial biogenesis in liver. J Biol Chem. 1995;270:10342-50.
  • Alconada A, Flores AI, Blanco L, Cuezva JM. Antibodies against F1-ATPase alpha-subunit recognize mitochondrial chaperones. Evidence for an evolutionary relationship between chaperonin and ATPase protein families. J Biol Chem. 1994;269:13670-9.
  • Luis AM, Izquierdo JM, Ostronoff LK, Salinas M, Santarén JF, Cuezva JM. Translational regulation of mitochondrial differentiation in neonatal rat liver. Specific increase in the translational efficiency of the nuclear-encoded mitochondrial beta-F1-ATPase mRNA. J Biol Chem. 1993;268:1868-75.
  • Izquierdo JM, Luis AM, Cuezva JM. Postnatal mitochondrial differentiation in rat liver. Regulation by thyroid hormones of the beta-subunit of the mitochondrial F1-ATPase complex. J Biol Chem. 1990;265:9090-7.
  • Luis AM, Alconada A, Cuezva JM. The alpha regulatory subunit of the mitochondrial F1-ATPase complex is a heat-shock protein. Identification of two highly conserved amino acid sequences among the alpha-subunits and molecular chaperones. J Biol Chem. 1990;265:7713-6.
  • Valcarce C, Navarrete RM, Encabo P, Loeches E, Satrústegui J, Cuezva JM. Postnatal development of rat liver mitochondrial functions. The roles of protein synthesis and of adenine nucleotides. J Biol Chem. 1988;263:7767-75.

 


 

Other activities:

  • We are Unit 713 of CIBERER, in the field of Mitochondrial Pathology of the CIBER de Enfermedades Raras, Instituto de Salud Carlos III.
  • We are the Research Group leading “Translation of Energy Metabolism” in the field of Cancer of the Instituto de Investigación Hospital 12 de Octubre (i+12).
  • We have coordinated the MITOLAB Consortium of the Comunidad de Madrid.
  • Organized de “MITOLAB Closing Meeting” of the Madrid I+D Program, 12-13/11/2015.

 


 

Thesis:

  • Javier García Bermúdez. 2015. "Regulación de la expresión y actividad de IF1, el inhibidor fisiológico de la H+-ATP sintasa de la mitocondria” Universidad Autónoma de Madrid. Directores: José M. Cuezva and María Sánchez-Aragó. Sobresaliente “cum laude”. Awarded “Premio Extraordinario”.
  • Fulvio Santacatterina. 2016. Metabolismo energético en patología y su traslación a la clínica”. Universidad Autónoma de Madrid. Director: José M. Cuezva. Sobresaliente “cum laude”.

NOTE! This site uses cookies and similar technologies.

If you not change browser settings, you agree to it. Learn more

I understand

POLÍTICA DE COOKIES

¿Qué son las cookies?

Una cookie es un fichero que se descarga en su ordenador al acceder a determinadas páginas web. Las cookies permiten a una página web, entre otras cosas, almacenar y recuperar información sobre los hábitos de navegación de un usuario o de su equipo y, dependiendo de la información que contengan y de la forma en que utilice su equipo, pueden utilizarse para reconocer al usuario.

Tipos de cookies

A continuación, se realiza una clasificación de las cookies en función de una serie de categorías. No obstante es necesario tener en cuenta que una misma cookie puede estar incluida en más de una categoría.

  1. Tipos de cookies según la entidad que las gestione

    Según quien sea la entidad que gestione el equipo o dominio desde donde se envían las cookies y trate los datos que se obtengan, podemos distinguir:

    • Cookies propias: son aquéllas que se envían al equipo terminal del usuario desde un equipo o dominio gestionado por el propio editor y desde el que se presta el servicio solicitado por el usuario.
    • Cookies de terceros: son aquéllas que se envían al equipo terminal del usuario desde un equipo o dominio que no es gestionado por el editor, sino por otra entidad que trata los datos obtenidos través de las cookies. En el caso de que las cookies sean instaladas desde un equipo o dominio gestionado por el propio editor pero la información que se recoja mediante éstas sea gestionada por un tercero, no pueden ser consideradas como cookies propias.

  2. Tipos de cookies según el plazo de tiempo que permanecen activadas

    Según el plazo de tiempo que permanecen activadas en el equipo terminal podemos distinguir:

    • Cookies de sesión: son un tipo de cookies diseñadas para recabar y almacenar datos mientras el usuario accede a una página web. Se suelen emplear para almacenar información que solo interesa conservar para la prestación del servicio solicitado por el usuario en una sola ocasión (p.e. una lista de productos adquiridos).
    • Cookies persistentes: son un tipo de cookies en el que los datos siguen almacenados en el terminal y pueden ser accedidos y tratados durante un periodo definido por el responsable de la cookie, y que puede ir de unos minutos a varios años.

  3. Tipos de cookies según su finalidad

    Según la finalidad para la que se traten los datos obtenidos a través de las cookies, podemos distinguir entre:

    • Cookies técnicas: son aquéllas que permiten al usuario la navegación a través de una página web, plataforma o aplicación y la utilización de las diferentes opciones o servicios que en ella existan como, por ejemplo, controlar el tráfico y la comunicación de datos, identificar la sesión, acceder a partes de acceso restringido, recordar los elementos que integran un pedido, realizar el proceso de compra de un pedido, realizar la solicitud de inscripción o participación en un evento, utilizar elementos de seguridad durante la navegación, almacenar contenidos para la difusión de videos o sonido o compartir contenidos a través de redes sociales.
    • Cookies de personalización: son aquéllas que permiten al usuario acceder al servicio con algunas características de carácter general predefinidas en función de una serie de criterios en el terminal del usuario como por ejemplo serian el idioma, el tipo de navegador a través del cual accede al servicio, la configuración regional desde donde accede al servicio, etc.
    • Cookies de análisis: son aquéllas que permiten al responsable de las mismas, el seguimiento y análisis del comportamiento de los usuarios de los sitios web a los que están vinculadas. La información recogida mediante este tipo de cookies se utiliza en la medición de la actividad de los sitios web, aplicación o  lataforma y para la elaboración de perfiles de navegación de los usuarios de dichos sitios, aplicaciones y plataformas, con el fin de introducir mejoras en función del análisis de los datos de uso que hacen los usuarios del servicio.

Cookies utilizadas en nuestra web

La página web del CBMSO utiliza Google Analytics. Google Analytics es una herramienta sencilla y fácil de usar que ayuda a los propietarios de sitios web a medir cómo interactúan los usuarios con el contenido del sitio. Puede consultar más información sobre las cookies utilizadas por Google Analitycs en este enlace.

Aceptación de la Política de cookies

El Centro de Biología Molecular Severo Ochoa asume que usted acepta el uso de cookies si continua navegando al considerar que se trata de una acción consciente y positiva de la que se infiere el consentimiento del usuario. En tal sentido se le informa previamente de que tal conducta será interpretada en el sentido de que acepta la instalación y utilización de las cookies.

Ante esta información es posible llevar a cabo las siguientes acciones:

Cómo modificar la configuración de las cookies

Usted puede restringir, bloquear o borrar las cookies de cualquier página web, utilizando su navegador. En cada navegador la operación es diferente, aquí le mostramos enlaces sobre este particular de los navegadores más utilizados: