Cabecera 2019 CBMSO CSIC UAM

Sunday, 25th August 2019

Confocal LSM800 Invertido

Ubicación: 3ª Planta (Lab. 310)

Microscopio de Barrido Láser confocal LSM800 acoplado a un microscopio invertido Axio Observer (Zeiss)

RESERVAR

 Características técnicas

  • Objetivos (Zeiss)
    • 10X/0.3 Plan-Apochromat (Campo claro, Nomarski. Posiciones BF y DIC II del condensador, respectivamente) (Solicitar al personal del SMOC si se va a usar DIC)
    • 20X/0.8 Plan-Apochromat (Campo claro, Nomarski. Posiciones BF y DIC II del condensador, respectivamente)
    • 25X/0.8 oil Plan-Apochromat (Aceite. Campo claro, Nomarski. Posiciones BF y DIC III del condensador, respectivamente)
    • 40X/1.3 oil Plan-Apochromat (Aceite. Campo claro, Nomarski. Posiciones BF y DIC III del condensador, respectivamente)
    • 63X/1.4 oil Plan-Apochromat (Aceite. Campo claro, Nomarski. Posiciones BF y DIC III del condensador, respectivamente)

 

  • Filtros de Fluorescencia
    • Dapi (G365 FT395 420-470) (Set 49 Zeiss)
    • FITC (BP450-90 FT495 BP500-50) (Set 38 Zeiss)
    • Cy3 (534-559 FT570 570-640) (Set 43 Zeiss)

 

  • Óptica (Campo Claro, Nomarski y Fluorescencia)

 

  • Láser (Diodos: 405, 488, 561 y 640)

 

  • Detectores Confocal
    • Detector1 GaAsP:SP470, SP545 y SP620.
    • Detector2 GaAsP:LP575, SP620, LP655 y LBF640

 

 

  • Ordenador (ZEN Blue 2.3 en windows7 64bits)

 

MANUAL DE USO (english version) (Disponible en "Documents" del sistema de Reservas)

Deconvolución: Valores necesarios para una correcta adquisición

Cuestiones generales de microscopía confocal

Póster explicativo de un sistema confocal

EQUIPO NIKON

Ubicación: 3ª Planta (Lab. 310)

Microscopio Confocal A1R+ de Alta Velocidad de Adquisición y Sensibilidad (Nikon) acoplado a un microscopio invertido modelo Eclipse Ti-E(Nikon) 

RESERVAR

 Características técnicas

  • Objetivos
    • 10X/0.45 Plan-Apocromático (Campo claro. Posición A del condensador) Perfect Focus System (PFS)
    • 20X/0.75 Plan-Apocromático (Campo claro, Nomarski. Posiciones A y DIC N2 del condensador, respectivamente) PFS
    • 20X/0.75 oil Plan-Fluor (Aceite. Campo claro, Nomarski. Posiciones A y DIC N2 del condensador, respectivamente)
    • 40X/1.3 oil Plan-Fluor (Aceite. Campo claro, Nomarski. Posiciones A y DIC N2 del condensador, respectivamente) PFS
    • 60X/1.4 oil Plan-Apocromático (Aceite. Campo claro, Nomarski. Posiciones A y DIC N2 del condensador, respectivamente) PFS
    • 60x/1.2 Waterl Plan-Apocromatico (Agua. Campo claro. Posición A del condensador) PFS

 

  • Filtros de Fluorescencia
    • DAPI (340-380 FT400 435-485) 
    • CFP (425-443 FT452 459-499) 
    • GFP (469-486 FT497 505-544) 
    • TRITC (532-552 FT570 594-646) 

 

  • Óptica (campo claro, nomarski y Fluorescencia)

 

  • Láser (405, 445, 488, 514, 561 y 640)

 

  • Detectores Confocal

 

 

  • Ordenador (NIS Elementes 4.40 en Windows10 64bits)

 

MANUAL DE USO (Disponible en "Documents" del sistema de Reservas)

Alta velocidad de adquisición, escáner resonante (tutorial explicativo) y escáner hibrido

Guia básica de uso del Confocal

Deconvolución: Valores necesarios para una correcta adquisición

    MICROSCOPÍA ÓPTICA Y CONFOCAL
 

Coordinador Científico:
Fco. Javier Díez-Guerra
Responsable Técnico:
Ángeles Muñoz

 

Microscopía Óptica y Confocal

 

SMOC

 

Comunidad de Madrid

 

ÚLTIMAS NOTICIAS

HORARIO SMOC 04/07/19: De 10:30-17:00

 

ENLACES - PROTOCOLOS - ESTUDIOS IN VIVO - ARTÍCULOS

 

  • Swedlow and Platani. (2002). Live cell imaging using wide-field microscopy and deconvolution. Cell Structure and Function. 27, 335-342
  • Microscopía confocal en células vivas. Dailey, et al. ("Handbook of Biological Confocal Microscopy") -> ENLACE INTERNO QUE YA NO FUNCIONA
  • Baggett, et al. 2003. Fluorescent Labeling of Yeast. Current Protocols in Cell Biology. 4.13.1–4.13.28
  • Khodjakov and Rieder. (2006). Imaging the division process in living tissue culture cells. 38, 2-16
  • Rao, et al. (2007). Fluorescence imaging in vivo: recent advances. Curr. Op. Biotech. 18, 17-21
  • Mavrakis, et al. (2008). Fluorescence Imaging Techniques for Studying Drosophila Embryo Development. Current Protocols in Cell Biology. 39:4.18.1–4.18.43
  • Frigault et al. (2009). Live-cell microscopy – tips and tools. Journal of Cell Science 122, 753-767
  • Bogdanov, et al. (2009). Cell culture medium affects GFP photostability: a solution. Nature Methods 6, 859-860
  • Schroeder, T. (2011). Long-term single-cell imaging of mammalian stem cells. Nature Methods. 8, S20-S35
  • J. Hardyn. (2011). Imaging Embryonic Morphogenesis in C. elegans. Methods in Cell Biology. 106, 377–412
  • Methods in Enzymology. 2012. Volume 505, Pages 2-523
  • Methods in Enzymology. 2012. Volume 506, Pages 2-490
  • Ge, et al. (2013). Standard fluorescent imaging of live cells is highly genotoxic. Cytometry. 83A, 552-560
    MICROSCOPÍA ÓPTICA Y CONFOCAL
 

Coordinador Científico:
Fco. Javier Díez-Guerra
Responsable Técnico:
Ángeles Muñoz

 

Microscopía Óptica y Confocal

 

SMOC

 

Comunidad de Madrid

 

ÚLTIMAS NOTICIAS

HORARIO SMOC 04/07/19: De 10:30-17:00

 

ENLACES - PROTOCOLOS - ESTUDIOS IN VIVO - MONTAJE DE MUESTRAS

 

    MICROSCOPÍA ÓPTICA Y CONFOCAL
 

Coordinador Científico:
Fco. Javier Díez-Guerra
Responsable Técnico:
Ángeles Muñoz

 

Microscopía Óptica y Confocal

 

SMOC

 

Comunidad de Madrid

 

ÚLTIMAS NOTICIAS

HORARIO SMOC 04/07/19: De 10:30-17:00

 

ENLACES - PROTOCOLOS - ESTUDIOS IN VIVO - INFORMACIÓN GENERAL

 

Para mantener la humedad en experimentos de larga duración es conveniente utilizar uno de estos dos sistemas: 1) Aceite mineral (Sigma. M-5310 o Ibidi. Ref-50051), 2) "Foilcovers" (PeCon. 0701-001) (disponibles en el S.M.O.C.) ó 3) Placas especiales (Ibidi). Estos sistemas permiten la difusión de gases impidiendo la evaporación del medio.

Si necesitáis utilizar placas multipocillo para experimentos in vivo de larga duración os recomendamos especialmente las de la marca Ibidi, ya que se adaptan mejor a nuestros portamuestras. Sin embargo, tened en cuenta que al final sólo podréis usar los 4 pocillos centrales y no en su totalidad. Siempre que podáis utilizad las placas P35 de Mattek que tenemos en el S.M.O.C. Os sirven para un sólo experimento a la vez pero son las que dan mejor resultado. En cualquier caso podéis consultar otros modelos en: Cámaras de incubación, vidrio y plástico.

En el S.M.O.C. disponemos del sistema de perfusión POC-Mini de LaCon con dos bombas para jeringuillas de Harvard Apparatus.

 

    MICROSCOPÍA ÓPTICA Y CONFOCAL
 

Coordinador Científico:
Fco. Javier Díez-Guerra
Responsable Técnico:
Ángeles Muñoz

 

Microscopía Óptica y Confocal

 

SMOC

 

Comunidad de Madrid

 

ÚLTIMAS NOTICIAS

HORARIO SMOC 04/07/19: De 10:30-17:00

 

ENLACES - PROTOCOLOS - LIBROS Y ARTÍCULOS - FRET, FRAP Y OTRAS TÉCNICAS - ARTÍCULOS DESDE 2007

 

  • Chang-Deng, et al.(2007). Visualization of Protein Interactions in Living Cells Using Bimolecular Fluorescence Complementation (BiFC) Analysis. Current Protocols in Cell Biology. Unit 21.3
  • Biskup, et al.(2007) Multi-dimensional fluorescence lifetime and FRET measurements. Microscopy Research and Technique
  • Massoud, et al.(2007) Reporter gene imaging of protein–protein interactions in living subjects . Curr. Op. Biotech. 18, 31-37
  • Cardullo, R. (2007) Theoretical Principles and Practical Considerations for Fluorescence Resonance Energy Transfer Microscopy. Methods in Cell Biology. 81, 479-494
  • Piston and Kremers. (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends in Biochemical Sciences. 32, 407-414
  • Domingo, et al. (2007) Imaging FRET standards by steady-state fluorescence and lifetime methods. Microscopy Research and Technique. 70, 1010-1021
  • Ohad, et al. (2007). The Analysis of Protein-Protein Interactions in Plants by Bimolecular Fluorescence Complementation. Plant Physiology. 145, 1090-1099
  • Goedhart, et al. (2007). Sensitive Detection of p65 Homodimers Using Red-Shifted and Fluorescent Protein-Based FRET Couples. PloS One. 10, e1011
  • J. G. McNally. (2008). Quantitative FRAP in Analysis of Molecular Binding Dynamics In Vivo. Methods in Cell Biology. 85, 329-351
  • Shimozono and Miyawaki. (2008). Engineering FRET Constructs Using CFP and YFP. Methods in Cell Biology. 85, 381-393
  • T. K. Kerppola. (2008). Bimolecular Fluorescence Complementation: Visualization of Molecular Interactions in Living Cells. Methods in Cell Biology. 85, 431-470
  • Day, et al. (2008). Characterization of an improved donor fluorescent protein for Förster resonance energy transfer microscopy. J. Biomed. Opt. 13, 031203.
  • VanEngelenburg and Palmer. (2008). Fluorescent biosensors of protein function. Curr. Op. Chem. Biol. 12, 60-65
  • Van der Krogt, et al. (2008). A Comparison of Donor-Acceptor Pairs for Genetically Encoded FRET Sensors: Application to the Epac cAMP Sensor as an Example. PloS ONE. 3, e1916
  • Li, et al. (2008). Molecular beacons: An optimal multifunctional biological probe. Biochemical and Biophysical Research Communications. 373, 457-461
  • Mueller, et al. (2010). Evidence for a Common Mode of Transcription Factor Interaction with Chromatin as Revealed by Improved Quantitative Fluorescence Recovery after Photobleaching. Biophysical Journal. 94, 3323-3339
  • Ai, eta al. (2008). Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nature Methods. 5, 401-403
  • Periasamy, et al.(2008). Chapter 22 Quantitation of Protein–Protein Interactions: Confocal FRET Microscopy. Methods in Cell Biology. 89, 569-598
  • Weinthal and Tzfira.(2009). Imaging protein–protein interactions in plant cells by bimolecular fluorescence complementation assay. Trends in Plant Science. 14, 59-63
  • Shcherbo, et al. (2009). Practical and reliable FRET/FLIM pair of fluorescent proteins. BMC Biotechnol. 9: 24
  • Kang, et al. (2009). A Generalization of Theory for Two-Dimensional Fluorescence Recovery after Photobleaching Applicable to Confocal Laser Scanning Microscopes. Biophysical Journal. 97, 1501-1511
  • Padilla-Parra, et al. (2009). In The Quest Of The Best Fluorescent Protein Couple For Quantitative FRET-FLIM. Biophysical Journal. 96, 403a
  • Padilla-Parra, et al. (2009). Quantitative Comparison of Different Fluorescent Protein Couples for Fast FRET-FLIM Acquisition. Biophysical Journal. 97. 2368-2376
  • Brzostowski, et al. (2009). Imaging Protein-Protein Interactions by Förster Resonance Energy Transfer (FRET) Microscopy in Live Cells. Current Protocols in Protein Science. UNIT 19.5
  • Nakamura and Matsuda. (2009). In Vivo Imaging of Signal Transduction Cascades with Probes Based on Förster Resonance Energy Transfer (FRET). Current Protocols in Cell Biol. Unit 14.10
  • Trembecka, et al. (2010). Conditions for using FRAP as a quantitative technique - Influence of the bleaching protocol. Cytometry. Part A. 77A, 366 - 370
  • Mueller, et al. (2010). FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know?. Current Opinion in Cell Biology. 22, 403-411
  • Charlene Depry and Jin Zhang. (2010). Visualization of Kinase Activity with FRET-Based Activity Biosensors. Current Protocols in Molecular Biology. UNIT 18.15
  • Rusanov, et al. (2010). Lifetime imaging of FRET between red fluorescent proteins. J. Biophotonics. 3, 774-783
  • Yuansheng et al. (2010). FRET Microscopy in 2010: The Legacy of Theodor Förster in the 100th Anniversary of his Birth. ChemPhysChem. doi: 10.1002/cphc.201000664
  • Hernán, et al. (2010). FRET in Cell Biology: still shining in the age of super-resolution? ChemPhysChem. doi: 10.1002/cphc.201000795
  • Pietraszeweska-Bogiel and Gadella. (2010). FRET microscopy: from principle to routine technology in cell biology. J. Microscopy. 241, 111-118
  • Mueller, et al. (2012). Minimizing the Impact of Photoswitching of Fluorescent Proteins on FRAP Analysis. Biophysical Journas. 102, 1656-1665.
  • Seitz, et al. (2012). Quantifying the influence of yellow fluorescent protein photoconversion on acceptor photobleaching-based fluorescence energy transfer measurements. J. Biomed. Opt. 17, 011010
  • Ishikawa-Ankerhold, et al. (2012). Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM. Molecules. 17, 4047-4132
  • Lam, A., et al. (2012). Improving FRET dynamic range with bright green and red fluorescent proteins. Nat. Methods. doi:10.1038/nmeth.2171
  • Grefen and Blatt. (2012). A 2in1 clonning system enables ratiometric bimolecular fluorescence compelmentation (rBiFC). Biotechniques. Sept, 1-4
  • Kodama and Hu. (2012). Bimolecular Fluorescence Complementation (BiFC): A 5-year update and future prespectives. Biotechniques. 53, 285-298
  • Broussard, et al. (2013). Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nature Protocols. 8, 265-281
  • Grecco and Bastiaens. (2013). Quatifying cellular dynamics by Fluorescence Resonance Energy Transfer (FRET) microscopy. Curr. Protocol. Neurosci. 5.22.1-5.22.14
  • Kemp-O´Brien and Parsons. (2013). Using FRET to analyse signals controlling cell adhesion and migration. J. Microscopy. 251, 270-278
  • Constantini and Snapp. (2013). Probing Endoplasmic Reticulum Dynamics using Fluorescence Imaging and Photobleaching Techniques. Curr. Protoc. Cell Biol. Unit 21.7
  • Hu, et al. (2014). FRET-based and other fluorescent proteinase probes. Biotechnology J. 9, 266-281
  • Grünberg, et all. (2013). Engineering of weak helper interactions for high-efficiency FRET probes. Nature Methods. 10, 1021-1027.
  • Joosen ,et al. (2014). Effects of fixation procedures on the fluorescence lifetimesof Aequorea victoria derived fluorescent protein. J. Microscopy. 256, 166-176.
  • Takai, et al. (2015). Expanded palette of Nano-lanterns for real-time multicolor luminiscence imaging. PNAS. 112, 4352-4356.
  • Lorén, et al. (2015). Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice. Quarterly Reviews of Biophysics. 48, 323-387.
    MICROSCOPÍA ÓPTICA Y CONFOCAL
 

Coordinador Científico:
Fco. Javier Díez-Guerra
Responsable Técnico:
Ángeles Muñoz

 

Microscopía Óptica y Confocal

 

SMOC

 

Comunidad de Madrid

 

ÚLTIMAS NOTICIAS

HORARIO SMOC 04/07/19: De 10:30-17:00

 

ENLACES - PROTOCOLOS - LIBROS Y ARTÍCULOS - FRET, FRAP Y OTRAS TÉCNICAS - ARTÍCULOS HASTA 2006

 

  • Knight, et al. (2003). Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death. Am. J. Physiol. Cell Physiol. 284, C1083-C1089
  • Pollok and Heim. (1999). Using GFP in FRET-based applications. TICB. 9, 57-60
  • Bastiaens, P. and Pepperkok, R. (2000). Observing proteins in their natural habitat: the living cell. TIBS. 25, 631-637
  • Sorkin, et al. (2000). Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Current biology. 10, 1395-1398
  • Sorkin, et al. (2000). Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Supplementary material. Current biology 20 October 2000. 10, 1395-1398
  • Reits and Neefjes. (2001). From fixed to FRAP: measuring protein mobility and activity in living cells. Nature Cell Biol. 3, E145-147
  • Zimmermann, et al. (2002). Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS letters. 531, 245-249
  • Dunn, et all. (2002). Fluorescence localization after photobleaching (FLAP): a new method for studying protein dynamics in living cells. J. Microscopy. 205, 109-112
  • Chen Y, Mills JD, Periasamy A.(2003). Protein localization in living cells and tissues using FRET and FLIM. Differentiation. 71, 528-41
  • Danuser and Waterman-Storer. (2003). Quantitative fluorescente speckle microscopy: where it came from and where it is going. J. Microscopy. 211, 1365-2818
  • Oliveria, et al. (2003). Imaging kinase-AKAP79-phosphatase scaffold complexes at the plasma membrane in living cells using FRET microscopy. J. Cell Biol. 160, 101-112
  • Sekar and Periasamy. (2003). Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160, 629-633
  • Zimmermann, et al. (2003). Spectral imaging and its applications in live cell microscopy. FEBS letters. 546, 87-92
  • Karpova, et al. (2003). Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J. Microscopy. 209, 56-70
  • Berney and Danuser. (2003). FRET or No FRET: A Quantitative Comparison. Biophysical Journal. 84, 3992-4010
  • Gu Y, Di WL, Kelsell DP, Zicha D. (2004). Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing. Journal of Microscopy. 215, 162-173
  • Verkhushaand Lukyanov . (2004). The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nature Biotech . 22, 289 - 296
  • Karasawa et.al. (2004). Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem. J. 38, 307–312
  • Bunt and Wouters. (2004). Visualization of molecular activities inside living cells with fluorescent labels. Int.Rev.Cytology. 237, 205-277
  • Day, R. (2005). Imaging protein behavior inside the living cell. Molecular and Cellular Endocrinology. 230, 1-6
  • Barbato, et al. (2005). Interaction of Tau with Fe65 links tau to APP. Neurobiology of Disease. 18, 399-408
  • Voss, et al. (2005). Quantitative imaging of protein interactions in the cell nucleus. Biotechniques. 38, 413-424
  • Sprague and McNally. (2005). FRAP analysis of binding: proper anf fitting. TICB. 15, 84-91
  • Wallrabe and Periasamy. (2005). Imaging protein molecules using FRET and FLIM microscopy. Curr.Op.Biotech. 16, 19-27
  • Köster, et al. (2005). Nucleocytoplasmatic shuttling revealed by FRAP and FLIP technologies. Curr.Op.Biotech. 16, 28-34
  • Welsh and Kay. (2005). Bioluminiscence imaging in living organisms. Curr.Op.Biotech. 16, 73-78
  • Nguyen and Daugherty. (2005). Evolutionary optimization of fluorescent proteins for intracellular FRET. Nature Biotechnology. 23, 355 - 360
  • Houtsmuller, A. (2005). Fluorescence Recovery after Photobleaching: Application to Nuclear Proteins. Advances in Biochemical Engineering/Biotechnology. 95, 177-199
  • Day and Schaufele. (2005). Imaging molecular interactions in living cells. Mol. Endocrinology. 19, 1675-1688
  • Presley. (2005). Imaging secretory pathway: the past and future impact of live cell optical techniques. Biochem. Biophys. Acta. 1744, 259-272
  • Valentin, et al. (2005). Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments. Nature Methods 2, 801
  • Feige, et al. (2005). PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Mic.Res.Tech. 68, 51-58
  • Kiyokawa, et al. (2006). Fluorescence (Förster) resonance energy transfer imaging of oncogene activity in living cells. Cancer Sci 2006. 97, 8–15
  • Wallrabe, et al. (2006). Issues in confocal microscopy for quantitative FRET analysis. Micr.Res.Tech. 69, 196 - 206
  • Pfleger and Eidne. (2006). Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat.Met. 3, 165-174
  • Hachet-Haas. (2006). FRET and colocalization analyzer - A method to validate measurements of sensitized emission FRET acquired by confocal microscopy and available as an ImageJ Plug-in. Micr. Res. Tech. 69, 941-956
  • Snapp and Hegde. (2006). Rational Design and Evaluation of FRET Experiments to Measure Protein Proximities in Cells. Current Protocols in Cell Biology. Unit 17.9
  • Herppola, T.K. (2006). Visualization of molecular interactions by fluorescence complementation. Nat. Rev. Mol. Cell Biol. 7, 449-456
  • Demarco, et al. (2006). Monitoring dynamic protein interactions with photoquenching FRET. Nature Methods. 3, 519-524
  • Horst Wolff, et al. (2006). Live-cell assay for simultaneous monitoring of expression and interaction of proteins. BioTechniques. 41, 688-692
  • Tramier, et all. (2006). Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microscopy Research and Technique. 69, 933 - 939
    MICROSCOPÍA ÓPTICA Y CONFOCAL
 

Coordinador Científico:
Fco. Javier Díez-Guerra
Responsable Técnico:
Ángeles Muñoz

 

Microscopía Óptica y Confocal

 

SMOC

 

Comunidad de Madrid

 

ÚLTIMAS NOTICIAS

HORARIO SMOC 04/07/19: De 10:30-17:00

 

ENLACES - PROTOCOLOS - LIBROS Y ARTÍCULOS - LIBROS DISPONIBLES EN EL S.M.O.C. U ONLINE

 

    MICROSCOPÍA ÓPTICA Y CONFOCAL
 

Coordinador Científico:
Fco. Javier Díez-Guerra
Responsable Técnico:
Ángeles Muñoz

 

Microscopía Óptica y Confocal

 

SMOC

 

Comunidad de Madrid

 

ÚLTIMAS NOTICIAS

HORARIO SMOC 04/07/19: De 10:30-17:00

 

ENLACES - PROTOCOLOS - LIBROS Y ARTÍCULOS - GENERALES

 

    MICROSCOPÍA ÓPTICA Y CONFOCAL
 

Coordinador Científico:
Fco. Javier Díez-Guerra
Responsable Técnico:
Ángeles Muñoz

 

Microscopía Óptica y Confocal

 

SMOC

 

Comunidad de Madrid

 

ÚLTIMAS NOTICIAS

HORARIO SMOC 04/07/19: De 10:30-17:00

 

ENLACES - SOFTWARE - IMAGEJ Y FIJI - ARTÍCULOS IMAGE/FIJI

 

  • Artículo sobre el módulo PixFRET
  • FRET and colocalization analyzer y un artículo referente a este módulo
  • Colocalizaciones y el artículo relacionado
  • Michael Brunk. (2018). HyphaTracker: An ImageJ toolbox for time-resolved analysis of spore germination in filamentous fungi.
  • Andrew M. K. Law (2017). Andy’s Algorithms: new automated digital image analysis pipelines for FIJI.
  • Andrew J.Valente. (2017). A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture.
  • Jean-FrançoisGilles (2016). DiAna, an ImageJ tool for object-based 3D co-localization and distance analysis
  • Schindelin, et al. (2015). The ImageJ Ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev.
  • Wiesmann, et al. (2015), Review of free software tools for image analysis of fluorescence cell micrographs. J. Microscopy, 257: 39–53.
  • Chenouard, et al. (2014). Objective comparison of particle tracking methods. Nature Methods. 11, 281-289.
  • Rizk, et al. (2014). Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh. Nature Protocols. 9, 586-596.
  • Chenouard, et al. (2014). Objective comparison of particle tracking methods. Nature Methods. 11, 281-289.
  • Boudaoud, et al. (2014). FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nature protocols. 9, 457-463.
  • Cordelières, et al. (2013). Automated Cell Tracking and Analysis in Phase-Contrast Videos (iTrack4U): Development of Java Software Based on Combined Mean-Shift Processes. PLOS ONE. 8, e81266.
  • De Oliveira Hein, et al. (2012) Extended depth from focus reconstruction using NIH ImageJ plugins: Quality and resolution of elevation maps. 75, 1593-1607.
  • Cardona, et al. (2012) TrakEM2 Software for Neural Circuit Reconstruction. PLoS ONE 7(6): e38011.
  • Focus on Bioimage Informatics. 2012. Nature Methods. 9, 627-763.
  • N. A. Hamilton. (2012) Open Source Tools for Fluorescent Imaging. Methods in Enzymolgy. 504, 393-417.
  • Erik Meijering, et al. (2012) Methods for Cell and Particle Tracking. Methods in Enzymology. 504, 183-200.
  • Sean R. Gallagher. (2010) Digital Image Processing and Analysis with ImageJ. Current Protocols Essential Laboratory Techniques. Appendix 3C. A.3C.1-A.3C.24.
  • Erik Meijering. (2010) Neuron tracing in perspective. Cytometry Part A.
  • Walter, et al. (2010) Visualization of image data from cells to organisms. Nature Methods. 7, S26-S41.
  • Swedlow and Eliceiri. (2009). Open source bioimage informatics for cell biology. Trends in Cell Biology. 19, 656-660.
  • Swedlow, et all. (2009). Bioimage Informatics for Experimental Biology. Annu. Rev. Biophys. 38, 327–46.
  • Popko, et al. (2008). Automated analysis of NeuronJ tracing data. Citometry Part A. Volume 75A Issue 4, Pages 371 - 376.
  • Rossner and Yamada. (2004). What's in a picture? The temptation of image manipulation
    MICROSCOPÍA ÓPTICA Y CONFOCAL
 

Coordinador Científico:
Fco. Javier Díez-Guerra
Responsable Técnico:
Ángeles Muñoz

 

Microscopía Óptica y Confocal

 

SMOC

 

Comunidad de Madrid

 

ÚLTIMAS NOTICIAS

HORARIO SMOC 04/07/19: De 10:30-17:00

 

ENLACES - SOFTWARE - IMAGEJ Y FIJI - PLUGINS Y UTILIDADES DESTACADOS

 

PLUGINS DE "IMAGEJ" y "FIJI" QUE OS PUEDEN RESULTAR DE INTERÉS
(algunos se van incorporando con el instalador del programa)
Programar tareas comunes para un grupo de imágenes

 

NOTE! This site uses cookies and similar technologies.

If you not change browser settings, you agree to it. Learn more

I understand

COOKIES POLICY

What are cookies?

A cookie is a file that is downloaded to your computer when you access certain web pages. Cookies allow a web page, among other things, to store and retrieve information about the browsing habits of a user or their equipment and, depending on the information they contain and the way they use their equipment, they can be used to recognize the user.

Types of cookies

Classification of cookies is made according to a series of categories. However, it is necessary to take into account that the same cookie can be included in more than one category.

  1. Cookies according to the entity that manages them

    Depending on the entity that manages the computer or domain from which the cookies are sent and treat the data obtained, we can distinguish:

    • Own cookies: those that are sent to the user's terminal equipment from a computer or domain managed by the editor itself and from which the service requested by the user is provided.
    • Third party cookies: those that are sent to the user's terminal equipment from a computer or domain that is not managed by the publisher, but by another entity that processes the data obtained through the cookies. When cookies are installed from a computer or domain managed by the publisher itself, but the information collected through them is managed by a third party, they cannot be considered as own cookies.

  2. Cookies according to the period of time they remain activated

    Depending on the length of time that they remain activated in the terminal equipment, we can distinguish:

    • Session cookies: type of cookies designed to collect and store data while the user accesses a web page. They are usually used to store information that only is kept to provide the service requested by the user on a single occasion (e.g. a list of products purchased).
    • Persistent cookies: type of cookies in which the data is still stored in the terminal and can be accessed and processed during a period defined by the person responsible for the cookie, which can range from a few minutes to several years.

  3. Cookies according to their purpose

    Depending on the purpose for which the data obtained through cookies are processed, we can distinguish between:

    • Technical cookies: those that allow the user to navigate through a web page, platform or application and the use of different options or services that exist in it, such as controlling traffic and data communication, identifying the session, access to restricted access parts, remember the elements that make up an order, perform the purchase process of an order, make a registration or participation in an event, use security elements during navigation, store content for the broadcast videos or sound or share content through social networks.
    • Personalization cookies: those that allow the user to access the service with some predefined general characteristics based on a series of criteria in the user's terminal, such as the language, the type of browser through which the user accesses the service, the regional configuration from where you access the service, etc.
    • Analytical cookies: those that allow the person responsible for them to monitor and analyse the behaviour of the users of the websites to which they are linked. The information collected through this type of cookies is used in the measurement of the activity of the websites, applications or platforms, and for the elaboration of navigation profiles of the users of said sites, applications and platforms, in order to introduce improvements in the analysis of the data of use made by the users of the service.

Cookies used on our website

The CBMSO website uses Google Analytics. Google Analytics is a simple and easy to use tool that helps website owners to measure how users interact with the content of the site. You can consult more information about the cookies used by Google Analitycs in this link.

Acceptance of the Cookies Policy

The CBMSO assumes that you accept the use of cookies if you continue browsing, considering that it is a conscious and positive action from which the user's consent is inferred. In this regard, you are previously informed that such behaviour will be interpreted that you accept the installation and use of cookies.

Knowing this information, it is possible to carry out the following actions:

How to modify the configuration of cookies

Using your browser you can restrict, block or delete cookies from any web page. In each browser the process is different, here we show you links on this particular of the most used browsers: