Monday, 10th December 2018

Molecular Neuropathology

    Calcium signalling in mitochondria and insulin/leptin signalling during ageing

 


 Lab 321 Grupo Jorgina Satrustegui 400

 


Jorgina Satrústegui

DSciStaff

DPublications

 

Research summary:

Ca2+ entry in mitochondria through the Ca2+ uniporter is important in cell Ca2+ signaling, but its persistence in mitochondria is associated with mitochondrial dysfunction and cell death. We are interested in the study of systems for Ca2+ signaling in mitochondria that do not require Ca2+ entry in the organelle: the mitochondrial carriers of aspartate-glutamate carriers (AGC) aralar and citrin, components of the malate aspartate shuttle (MAS), and those of ATP-Mg/Pi, or Short CaMCs (SCaMCs) which sense extramitochondrial Ca2+ to regulate metabolite transport and mitochondrial functionality. We focus on their role in regulating respiration in intact cells and in the regulation of brain aspartate and glutamate levels and traffic.
We found that these transporters, particularly AGC1/Aralar, are essential for basal mitochondrial respiration of intact cultured neurons and for the Ca2+ dependent stimulation of respiration in response to different workloads.

 Jorgina Satrustegui Fig01 300 ------

 

Mitochondrial Calcium Uniporter (MCU) and Ca2+-regulated mitochondrial carriers, SCaMCs and AGCs, mediate Ca2+-signalling to mitochondria. MCU and SCaMCs are activated by cytosolic [Ca2+] at uM range whereas that AGCs require lower cytosolic [Ca2+] about 100-300 nM for activation.

 

Jorgina Satrustegui Fig02 300

 
Representative images of WT and SCaMC-3 KO neurons transfected with the mitochondrial FRET-based ATP probe GO-ATeam-2 to monitor changes in mitochondrial ATP levels after NMDA exposure.  

 

 

 

 
   

The AGC1/Aralar KO mouse recapitulates many features of human AGC1 deficiency including very low levels of brain N-acetyl-aspartate, hypomyelination and seizures. We proposed that in brain, glial glutamate and glutamine synthesis requires aspartate produced in neurons, and we have now verified this proposal within the retina, finding that glutamine synthesis in Müller glial cells depends on the transcellular flux of aspartate from photoreceptors. These new functions of AGC1/Aralar-MAS in intra- and intercellular traffic of amino acids may set the basis for new therapeutic strategies in this and other brain disorders.
Aging is characterized by insulin and leptin resistance, and cardiovascular disease. We focuses our work in two aspects: 1) Changes in heart function in aged rats fed ad libitum or after 3-months of moderate caloric restriction; and 2) Changes in CCK satiating and insulin sensitizing effects looking for possible mechanisms involved in the development of insulin resistance with aging and its reversion.


 

Publications:

  • Llorente-Folch, I., Sahún, I., Contreras, L., Casarejos, MJ., Grau JM, Saheki, T., Mena, MA., Satrústegui, J., Dierssen M. and Pardo, B. (2013) AGC1-malate aspartate shuttle activity is critical for dopamine handling in the nigrostriatal pathway. J. Neurochem. 124, 347-362.
  • Amigo, I., Traba, J., González-Barroso, MM., Rueda, CB., Fernández, M., Rial, E., Sánchez, A, Satrústegui, J. and del Arco, A. (2013) Glucagon regulation of oxidative phosphorylation requires an increase in matrix adenine nucleotide content through Ca2+ activation of the mitochondrial ATP-Mg/Pi carrier SCaMC-3. J. Biol. Chem. 288, 7791-7802.
  • Llorente-Folch, I., Rueda, CB., Amigo, I., del Arco, A., Saheki, T., Pardo, B. and Satrústegui, J. (2013) Calcium-regulation of mitochondrial respiration maintains ATP homeostasis and requires ARALAR/AGC1-malate aspartate shuttle in intact cortical neurons. J. Neurosci. 33, 13957-13971.
  • Du, J., Cleghorn, W., Contreras, L, Linton, JD., Chan, GC., Chertov, AO., Saheki, T., Govindaraju, V., Sadilek, M., Satrústegui J, Hurley JB. (2013) Cytosolic reducing power preserves glutamate in retina. Proc. Natl. Acad. Sci. U. S. A. 110, 18501-18506.
  • Pla-Martín, D., Rueda, CB., Estela, A., Sánchez-Piris, M., González-Sánchez, P., Traba, J., de la Fuente, S., Scorrano, L., Renau-Piqueras, J., Alvarez, J., Satrústegui, J. and Palau, F. (2013) Silencing of the Charcot-Marie-Tooth disease-associated gene GDAP1 induces abnormal mitochondrial distribution and affects Ca2+ homeostasis by reducing store-operated Ca2+ entry. Neurobiol. Dis. 55, 140-151.
    • Du J, Cleghorn WM, Contreras L, Lindsay K, Rountree AM, Chertov AO, Turner SJ, Sahaboglu A, Linton J, Sadilek M, Satrústegui J, Sweet IR, Paquet-Durand F, Hurley JB. (2013) Inhibition of mitochondrial pyruvate transport by zaprinast causes massive accumulation of aspartate at the expense of glutamate in the retina. J. Biol. Chem. 288, 36129-36140.
    • Pardo B, Contreras L, Satrústegui J. (2013) De novo Synthesis of Glial Glutamate and Glutamine in Young Mice Requires Aspartate Provided by the Neuronal Mitochondrial Aspartate-Glutamate Carrier Aralar/AGC1. Front. Endocrinol. 4, 149.
    • Rueda, CB., Llorente-Folch, I., Amigo, I., Contreras, L., González-Sánchez, P., Martínez-Valero, P., Juaristi, I., Pardo, B., del Arco, A. and Satrústegui J. (2014) Ca(2+) regulation of mitochondrial function in neurons. Biochim. Biophys. Acta 1837, 1617-1624.
    • Lindsay, KJ., Du, J., Sloat, SR., Contreras, L., Linton, JD., Turner, SJ., Sadilek, M., Satrústegui, J. and Hurley, JB. (2014) Pyruvate kinase and aspartate-glutamate carrier distributions reveal key metabolic links between neurons and glia in retina. Proc. Natl. Acad. Sci. U. S. A. 111, 15579-15584.
    • Granado, M., Rubio, C., Amor, S., Monge, L., Fernández, N., Carreño-Tarragona, G., Carrascosa, JM. and García-Villalón ÁL. (2014) Effects of age and caloric restriction on the cardiac and coronary response to endothelin-1 in rats. Exp. Gerontol. 60, 183-189.

    Capítulos de libros:

    del Arco, A. and Satrústegui, J. (March 2013) Mitochondrial Carriers. In: eLS. John Wiley & Sons, Ltd: Chichester.


 

Doctoral theses:

Ignacio Amigo de la Huerga (2013). “Characterization of SCaMC-3, the mitochondrial ATP-Mg/Pi carrier present in liver and brain”. UAM. Jorgina Satrústegui y Araceli del Arco

Irene Llorente Folch (2013). “New roles of aralar, the brain mitochondrial aspartate/glutamate carrier in dopamine handling glutamate excitotoxicity and regulation of mitocondrial respiration”. UAM. Jorgina Satrústegui y Beatriz Pardo.

Carlos B. Rueda Díez (2014). “Ca2+ modulation of mitochondrial function under physiological and pathological stimulation: Role of the ATP-Mg/Pi carrier, SCaMC-3”. UAM. Jorgina Satrústegui, Beatriz Pardo y Araceli del Arco.


 

NOTE! This site uses cookies and similar technologies.

If you not change browser settings, you agree to it. Learn more

I understand

POLÍTICA DE COOKIES

¿Qué son las cookies?

Una cookie es un fichero que se descarga en su ordenador al acceder a determinadas páginas web. Las cookies permiten a una página web, entre otras cosas, almacenar y recuperar información sobre los hábitos de navegación de un usuario o de su equipo y, dependiendo de la información que contengan y de la forma en que utilice su equipo, pueden utilizarse para reconocer al usuario.

Tipos de cookies

A continuación, se realiza una clasificación de las cookies en función de una serie de categorías. No obstante es necesario tener en cuenta que una misma cookie puede estar incluida en más de una categoría.

  1. Tipos de cookies según la entidad que las gestione

    Según quien sea la entidad que gestione el equipo o dominio desde donde se envían las cookies y trate los datos que se obtengan, podemos distinguir:

    • Cookies propias: son aquéllas que se envían al equipo terminal del usuario desde un equipo o dominio gestionado por el propio editor y desde el que se presta el servicio solicitado por el usuario.
    • Cookies de terceros: son aquéllas que se envían al equipo terminal del usuario desde un equipo o dominio que no es gestionado por el editor, sino por otra entidad que trata los datos obtenidos través de las cookies. En el caso de que las cookies sean instaladas desde un equipo o dominio gestionado por el propio editor pero la información que se recoja mediante éstas sea gestionada por un tercero, no pueden ser consideradas como cookies propias.

  2. Tipos de cookies según el plazo de tiempo que permanecen activadas

    Según el plazo de tiempo que permanecen activadas en el equipo terminal podemos distinguir:

    • Cookies de sesión: son un tipo de cookies diseñadas para recabar y almacenar datos mientras el usuario accede a una página web. Se suelen emplear para almacenar información que solo interesa conservar para la prestación del servicio solicitado por el usuario en una sola ocasión (p.e. una lista de productos adquiridos).
    • Cookies persistentes: son un tipo de cookies en el que los datos siguen almacenados en el terminal y pueden ser accedidos y tratados durante un periodo definido por el responsable de la cookie, y que puede ir de unos minutos a varios años.

  3. Tipos de cookies según su finalidad

    Según la finalidad para la que se traten los datos obtenidos a través de las cookies, podemos distinguir entre:

    • Cookies técnicas: son aquéllas que permiten al usuario la navegación a través de una página web, plataforma o aplicación y la utilización de las diferentes opciones o servicios que en ella existan como, por ejemplo, controlar el tráfico y la comunicación de datos, identificar la sesión, acceder a partes de acceso restringido, recordar los elementos que integran un pedido, realizar el proceso de compra de un pedido, realizar la solicitud de inscripción o participación en un evento, utilizar elementos de seguridad durante la navegación, almacenar contenidos para la difusión de videos o sonido o compartir contenidos a través de redes sociales.
    • Cookies de personalización: son aquéllas que permiten al usuario acceder al servicio con algunas características de carácter general predefinidas en función de una serie de criterios en el terminal del usuario como por ejemplo serian el idioma, el tipo de navegador a través del cual accede al servicio, la configuración regional desde donde accede al servicio, etc.
    • Cookies de análisis: son aquéllas que permiten al responsable de las mismas, el seguimiento y análisis del comportamiento de los usuarios de los sitios web a los que están vinculadas. La información recogida mediante este tipo de cookies se utiliza en la medición de la actividad de los sitios web, aplicación o  lataforma y para la elaboración de perfiles de navegación de los usuarios de dichos sitios, aplicaciones y plataformas, con el fin de introducir mejoras en función del análisis de los datos de uso que hacen los usuarios del servicio.

Cookies utilizadas en nuestra web

La página web del CBMSO utiliza Google Analytics. Google Analytics es una herramienta sencilla y fácil de usar que ayuda a los propietarios de sitios web a medir cómo interactúan los usuarios con el contenido del sitio. Puede consultar más información sobre las cookies utilizadas por Google Analitycs en este enlace.

Aceptación de la Política de cookies

El Centro de Biología Molecular Severo Ochoa asume que usted acepta el uso de cookies si continua navegando al considerar que se trata de una acción consciente y positiva de la que se infiere el consentimiento del usuario. En tal sentido se le informa previamente de que tal conducta será interpretada en el sentido de que acepta la instalación y utilización de las cookies.

Ante esta información es posible llevar a cabo las siguientes acciones:

Cómo modificar la configuración de las cookies

Usted puede restringir, bloquear o borrar las cookies de cualquier página web, utilizando su navegador. En cada navegador la operación es diferente, aquí le mostramos enlaces sobre este particular de los navegadores más utilizados: