Wednesday, 19th September 2018

Molecular Neuropathology

    Biology of human neural stem cells. Potential for cell                                                                                               and gene therapy in neurodegeneration




Alberto Martínez Serrano




Research summary:

The incidence of neurodegenerative diseases is steadily increasing, particularly in well-developed countries, due to the increase in life expectancy. For some of them, like Parkinson, Huntington diseases, pharmaceutical drugs are useful at early stages of the disease, but none of them really cure the disease, since they do not halt the neuronal atrophy and death process.

In this context, research on the basic biology of human neural stem cells acquires special relevance, with the prospect that healthy stem cell derivatives, after implantation, would either delay disease progression or actually cure the disease.

Our research group is interested in understanding basic self-renewal (niche factors) and developmental events leading to maturation of stem cell derivatives, using: 1) Neural stem cells, obtained from foetal or adult human tissue, and thus instructed as neural cells; 2) Embryonic stem cells derived from the inner cell mass of the blastocist, (hES cells) from which neural stem cells can be derived; and 3) Induced pluripotent stem cells (iPSCs), reprogrammed from somatic adult cells.

Fig01-300 ..... Generation of human dopaminergic neurons from neural stem cells.
Top panels are microphotographs of human neurons generated in culture, stained for a general neuronal marker (ß-III-tubulin, green) and Tyrosine Hydroxylase (dopaminergic marker, red). The lower panel is a merge of the two photographs, highlighting in yellow the presence of human dopaminergic neurons.

Our main research focus is thus on basic cell growth and developmental events involved in the generation of mature cells, particularly of Dopaminergic neurons, to learn how to harness the potential that stem cells may have for therapy of these devastating diseases.

Another aspect in which we are interested on is the modification of the intrinsic properties of the neural stem cells through genetic modification, to turn them into "biological mini-pumps" (for instance for the secretion of neurotrophic factors), or to instruct them or guide their differentiation towards specific, on-demand desired phenotypes after implantation. To this end we are implementing the technology of zinc-finger nucleases, to help to conduct homologous recombination. Last, we are developing nanotools to label and track the cells in vivo, and study their cell biology in culture.

Relevant publications:

  • Daviaud N, Garbayo E, Sindji L, Martínez-Serrano A, Schiller PC, Montero-Menei CN. Survival, differentiation, and neuroprotective mechanisms of human stem cells complexed with neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo model of Parkinson's disease. Stem Cells Transl Med. 2015 Jun;4(6):670-84. doi: 10.5966/sctm.2014-0139. Epub 2015 Apr 29. PMID:25890124
  • Ramos-Gómez M, Seiz EG, Martínez-Serrano A. Optimization of the magnetic labeling of human neural stem cells and MRI visualization in the hemiparkinsonian rat brain. J Nanobiotechnology. 2015 Mar 5;13:20. doi: 10.1186/s12951-015-0078-4. PMID:25890124
  • González-Sánchez HM, Monsiváis-Urenda A, Salazar-Aldrete CA, Hernández-Salinas A, Noyola DE, Jiménez-Capdeville ME, Martínez-Serrano A, Castillo CG. Effects of cytomegalovirus infection in human neural precursor cells depend on their differentiation state. J Neurovirol. 2015 Apr 8. [Epub ahead of print] PMID:25851778
  • Pino-Barrio MJ, García-García E, Menéndez P, Martínez-Serrano A. V-myc immortalizes human neural stem cells in the absence of pluripotency-associated traits. PLoS One. 2015 Mar 12;10(3):e0118499. doi: 10.1371/journal.pone.0118499. eCollection 2015. PMID:25764185
  • Martínez-Serrano A, Castillo CG, Courtois ET, García-García and Liste I (2011) Modulation of the generation of dopaminergic neurons from human neural stem cells by Bcl-XL. Mechanisms of action. Vitam. Horm. 87, 175-205.
  • García-García, E., Pino-Barrio, M.J., López-Medina, L., and Martínez-Serrano, A. (2012) Intermidiate progenitors are increased by lengthening of cell cycle through calcium signalling and p53 expression in human neural progenitors. Mol. Biol. Cell., 23, 1167-1180.
  • Fernández-Cabada, T., Sánchez-López de Pablo, C., Martínez-Serrano, A., del Pozo Guerrero, F. Serrano-Olmedo, J.J., Ramos-Gomez M (2012) Cell death induction in glioblastoma cell lines by hyperthermic therapy based on gold nanorods. International Journal of Nanomedicine 7, 1511-1523.
  • Ramos-Moreno, T., Castillo, C.G. and Martínez-Serrano, A. (2012) Long-term behavioral effects of functional dopaminergic neurons generated from human neural stem cells in the rat 6-OH-DA Parkinson's disease model. Effects of the forced expression of Bcl-XL. Behav. Brain Res., 232, 225-232.
  • Seiz, E.G., Ramos-Gómez, M., Courtois, E.T., Tønnesen, J., Kokaia, M., Liste I., and Martínez-Serrano, A., (2012) Human midbrain precursors activate the expected developmental genetic program and differentiate to functional A9 dopamine neurons in vitro. Short and Long term enhancement by Bcl-XL. Experimental Cell Research 318: 2446-59.


Doctoral theses:

Javier Gonzalez Lendínez (2011). Identification and analysis of suitable human ventral mesencephalic precursors of dopaminergic neurons for cell therapy research in Parkinson's Disease. Universidad Autónoma de Madrid. Co-director: Dra. Tania Ramos Moreno.

Emma Green (2012). The use of zinc-finger nucleases to track the generation of dopaminergic neurons from immortalised human ventral mesencephalic neural stem cells. Universidad de Keele. Co-directores: Alberto Martínez Serrano y Tania Ramos Moreno.

NOTE! This site uses cookies and similar technologies.

If you not change browser settings, you agree to it. Learn more

I understand


¿Qué son las cookies?

Una cookie es un fichero que se descarga en su ordenador al acceder a determinadas páginas web. Las cookies permiten a una página web, entre otras cosas, almacenar y recuperar información sobre los hábitos de navegación de un usuario o de su equipo y, dependiendo de la información que contengan y de la forma en que utilice su equipo, pueden utilizarse para reconocer al usuario.

Tipos de cookies

A continuación, se realiza una clasificación de las cookies en función de una serie de categorías. No obstante es necesario tener en cuenta que una misma cookie puede estar incluida en más de una categoría.

  1. Tipos de cookies según la entidad que las gestione

    Según quien sea la entidad que gestione el equipo o dominio desde donde se envían las cookies y trate los datos que se obtengan, podemos distinguir:

    • Cookies propias: son aquéllas que se envían al equipo terminal del usuario desde un equipo o dominio gestionado por el propio editor y desde el que se presta el servicio solicitado por el usuario.
    • Cookies de terceros: son aquéllas que se envían al equipo terminal del usuario desde un equipo o dominio que no es gestionado por el editor, sino por otra entidad que trata los datos obtenidos través de las cookies. En el caso de que las cookies sean instaladas desde un equipo o dominio gestionado por el propio editor pero la información que se recoja mediante éstas sea gestionada por un tercero, no pueden ser consideradas como cookies propias.

  2. Tipos de cookies según el plazo de tiempo que permanecen activadas

    Según el plazo de tiempo que permanecen activadas en el equipo terminal podemos distinguir:

    • Cookies de sesión: son un tipo de cookies diseñadas para recabar y almacenar datos mientras el usuario accede a una página web. Se suelen emplear para almacenar información que solo interesa conservar para la prestación del servicio solicitado por el usuario en una sola ocasión (p.e. una lista de productos adquiridos).
    • Cookies persistentes: son un tipo de cookies en el que los datos siguen almacenados en el terminal y pueden ser accedidos y tratados durante un periodo definido por el responsable de la cookie, y que puede ir de unos minutos a varios años.

  3. Tipos de cookies según su finalidad

    Según la finalidad para la que se traten los datos obtenidos a través de las cookies, podemos distinguir entre:

    • Cookies técnicas: son aquéllas que permiten al usuario la navegación a través de una página web, plataforma o aplicación y la utilización de las diferentes opciones o servicios que en ella existan como, por ejemplo, controlar el tráfico y la comunicación de datos, identificar la sesión, acceder a partes de acceso restringido, recordar los elementos que integran un pedido, realizar el proceso de compra de un pedido, realizar la solicitud de inscripción o participación en un evento, utilizar elementos de seguridad durante la navegación, almacenar contenidos para la difusión de videos o sonido o compartir contenidos a través de redes sociales.
    • Cookies de personalización: son aquéllas que permiten al usuario acceder al servicio con algunas características de carácter general predefinidas en función de una serie de criterios en el terminal del usuario como por ejemplo serian el idioma, el tipo de navegador a través del cual accede al servicio, la configuración regional desde donde accede al servicio, etc.
    • Cookies de análisis: son aquéllas que permiten al responsable de las mismas, el seguimiento y análisis del comportamiento de los usuarios de los sitios web a los que están vinculadas. La información recogida mediante este tipo de cookies se utiliza en la medición de la actividad de los sitios web, aplicación o  lataforma y para la elaboración de perfiles de navegación de los usuarios de dichos sitios, aplicaciones y plataformas, con el fin de introducir mejoras en función del análisis de los datos de uso que hacen los usuarios del servicio.

Cookies utilizadas en nuestra web

La página web del CBMSO utiliza Google Analytics. Google Analytics es una herramienta sencilla y fácil de usar que ayuda a los propietarios de sitios web a medir cómo interactúan los usuarios con el contenido del sitio. Puede consultar más información sobre las cookies utilizadas por Google Analitycs en este enlace.

Aceptación de la Política de cookies

El Centro de Biología Molecular Severo Ochoa asume que usted acepta el uso de cookies si continua navegando al considerar que se trata de una acción consciente y positiva de la que se infiere el consentimiento del usuario. En tal sentido se le informa previamente de que tal conducta será interpretada en el sentido de que acepta la instalación y utilización de las cookies.

Ante esta información es posible llevar a cabo las siguientes acciones:

Cómo modificar la configuración de las cookies

Usted puede restringir, bloquear o borrar las cookies de cualquier página web, utilizando su navegador. En cada navegador la operación es diferente, aquí le mostramos enlaces sobre este particular de los navegadores más utilizados: