Thursday, 14th December 2017
    MICROSCOPÍA ÓPTICA Y CONFOCAL
 

Coordinador Científico:
Fco. Javier Díez-Guerra
Responsable Técnico:
Ángeles Muñoz

 

Microscopía Óptica y Confocal

 

SMOC

 

Comunidad de Madrid

 

ÚLTIMAS NOTICIAS

  • 07-12-2017: LSM510 Vertical reparado. Se ha cambiado el escáner X y el láser de Argón (línea 488).
  • 17-11-2017: Disponible de nuevo eescáner resonante del confocal Nikon A1R.
  • 16-11-2017: Apertura   confocal LSM800 a partir del lunes 20. Para realizar las reservas y organizar las sesiones de formación y asistencia, dirigirse al SMOC (lab 310).
  • 09-02-2017 Láser Maitai del Multifotón fuera de servicio. El equipo se puede utilizar como confocal.
 

ENLACES - PROTOCOLOS - LIBROS Y ARTÍCULOS - FRET, FRAP Y OTRAS TÉCNICAS - ARTÍCULOS DESDE 2007

 

  • Chang-Deng, et al.(2007). Visualization of Protein Interactions in Living Cells Using Bimolecular Fluorescence Complementation (BiFC) Analysis. Current Protocols in Cell Biology. Unit 21.3
  • Biskup, et al.(2007) Multi-dimensional fluorescence lifetime and FRET measurements. Microscopy Research and Technique
  • Massoud, et al.(2007) Reporter gene imaging of protein–protein interactions in living subjects . Curr. Op. Biotech. 18, 31-37
  • Cardullo, R. (2007) Theoretical Principles and Practical Considerations for Fluorescence Resonance Energy Transfer Microscopy. Methods in Cell Biology. 81, 479-494
  • Piston and Kremers. (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends in Biochemical Sciences. 32, 407-414
  • Domingo, et al. (2007) Imaging FRET standards by steady-state fluorescence and lifetime methods. Microscopy Research and Technique. 70, 1010-1021
  • Ohad, et al. (2007). The Analysis of Protein-Protein Interactions in Plants by Bimolecular Fluorescence Complementation. Plant Physiology. 145, 1090-1099
  • Goedhart, et al. (2007). Sensitive Detection of p65 Homodimers Using Red-Shifted and Fluorescent Protein-Based FRET Couples. PloS One. 10, e1011
  • J. G. McNally. (2008). Quantitative FRAP in Analysis of Molecular Binding Dynamics In Vivo. Methods in Cell Biology. 85, 329-351
  • Shimozono and Miyawaki. (2008). Engineering FRET Constructs Using CFP and YFP. Methods in Cell Biology. 85, 381-393
  • T. K. Kerppola. (2008). Bimolecular Fluorescence Complementation: Visualization of Molecular Interactions in Living Cells. Methods in Cell Biology. 85, 431-470
  • Day, et al. (2008). Characterization of an improved donor fluorescent protein for Förster resonance energy transfer microscopy. J. Biomed. Opt. 13, 031203.
  • VanEngelenburg and Palmer. (2008). Fluorescent biosensors of protein function. Curr. Op. Chem. Biol. 12, 60-65
  • Van der Krogt, et al. (2008). A Comparison of Donor-Acceptor Pairs for Genetically Encoded FRET Sensors: Application to the Epac cAMP Sensor as an Example. PloS ONE. 3, e1916
  • Li, et al. (2008). Molecular beacons: An optimal multifunctional biological probe. Biochemical and Biophysical Research Communications. 373, 457-461
  • Mueller, et al. (2010). Evidence for a Common Mode of Transcription Factor Interaction with Chromatin as Revealed by Improved Quantitative Fluorescence Recovery after Photobleaching. Biophysical Journal. 94, 3323-3339
  • Ai, eta al. (2008). Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nature Methods. 5, 401-403
  • Periasamy, et al.(2008). Chapter 22 Quantitation of Protein–Protein Interactions: Confocal FRET Microscopy. Methods in Cell Biology. 89, 569-598
  • Weinthal and Tzfira.(2009). Imaging protein–protein interactions in plant cells by bimolecular fluorescence complementation assay. Trends in Plant Science. 14, 59-63
  • Shcherbo, et al. (2009). Practical and reliable FRET/FLIM pair of fluorescent proteins. BMC Biotechnol. 9: 24
  • Kang, et al. (2009). A Generalization of Theory for Two-Dimensional Fluorescence Recovery after Photobleaching Applicable to Confocal Laser Scanning Microscopes. Biophysical Journal. 97, 1501-1511
  • Padilla-Parra, et al. (2009). In The Quest Of The Best Fluorescent Protein Couple For Quantitative FRET-FLIM. Biophysical Journal. 96, 403a
  • Padilla-Parra, et al. (2009). Quantitative Comparison of Different Fluorescent Protein Couples for Fast FRET-FLIM Acquisition. Biophysical Journal. 97. 2368-2376
  • Brzostowski, et al. (2009). Imaging Protein-Protein Interactions by Förster Resonance Energy Transfer (FRET) Microscopy in Live Cells. Current Protocols in Protein Science. UNIT 19.5
  • Nakamura and Matsuda. (2009). In Vivo Imaging of Signal Transduction Cascades with Probes Based on Förster Resonance Energy Transfer (FRET). Current Protocols in Cell Biol. Unit 14.10
  • Trembecka, et al. (2010). Conditions for using FRAP as a quantitative technique - Influence of the bleaching protocol. Cytometry. Part A. 77A, 366 - 370
  • Mueller, et al. (2010). FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know?. Current Opinion in Cell Biology. 22, 403-411
  • Charlene Depry and Jin Zhang. (2010). Visualization of Kinase Activity with FRET-Based Activity Biosensors. Current Protocols in Molecular Biology. UNIT 18.15
  • Rusanov, et al. (2010). Lifetime imaging of FRET between red fluorescent proteins. J. Biophotonics. 3, 774-783
  • Yuansheng et al. (2010). FRET Microscopy in 2010: The Legacy of Theodor Förster in the 100th Anniversary of his Birth. ChemPhysChem. doi: 10.1002/cphc.201000664
  • Hernán, et al. (2010). FRET in Cell Biology: still shining in the age of super-resolution? ChemPhysChem. doi: 10.1002/cphc.201000795
  • Pietraszeweska-Bogiel and Gadella. (2010). FRET microscopy: from principle to routine technology in cell biology. J. Microscopy. 241, 111-118
  • Mueller, et al. (2012). Minimizing the Impact of Photoswitching of Fluorescent Proteins on FRAP Analysis. Biophysical Journas. 102, 1656-1665.
  • Seitz, et al. (2012). Quantifying the influence of yellow fluorescent protein photoconversion on acceptor photobleaching-based fluorescence energy transfer measurements. J. Biomed. Opt. 17, 011010
  • Ishikawa-Ankerhold, et al. (2012). Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM. Molecules. 17, 4047-4132
  • Lam, A., et al. (2012). Improving FRET dynamic range with bright green and red fluorescent proteins. Nat. Methods. doi:10.1038/nmeth.2171
  • Grefen and Blatt. (2012). A 2in1 clonning system enables ratiometric bimolecular fluorescence compelmentation (rBiFC). Biotechniques. Sept, 1-4
  • Kodama and Hu. (2012). Bimolecular Fluorescence Complementation (BiFC): A 5-year update and future prespectives. Biotechniques. 53, 285-298
  • Broussard, et al. (2013). Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nature Protocols. 8, 265-281
  • Grecco and Bastiaens. (2013). Quatifying cellular dynamics by Fluorescence Resonance Energy Transfer (FRET) microscopy. Curr. Protocol. Neurosci. 5.22.1-5.22.14
  • Kemp-O´Brien and Parsons. (2013). Using FRET to analyse signals controlling cell adhesion and migration. J. Microscopy. 251, 270-278
  • Constantini and Snapp. (2013). Probing Endoplasmic Reticulum Dynamics using Fluorescence Imaging and Photobleaching Techniques. Curr. Protoc. Cell Biol. Unit 21.7
  • Hu, et al. (2014). FRET-based and other fluorescent proteinase probes. Biotechnology J. 9, 266-281
  • Grünberg, et all. (2013). Engineering of weak helper interactions for high-efficiency FRET probes. Nature Methods. 10, 1021-1027.
  • Joosen ,et al. (2014). Effects of fixation procedures on the fluorescence lifetimesof Aequorea victoria derived fluorescent protein. J. Microscopy. 256, 166-176.
  • Takai, et al. (2015). Expanded palette of Nano-lanterns for real-time multicolor luminiscence imaging. PNAS. 112, 4352-4356.
  • Lorén, et al. (2015). Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice. Quarterly Reviews of Biophysics. 48, 323-387.