Cell signalling during imaginal development in Drosophila

Research summary:

The Drosophila wing originates from an epithelial tissue (wing imaginal disc), which growth and differentiation depends on the activity of conserved signalling pathways and transcription factors. The main focus of our work is to characterise the contribution of signalling pathways to the regulation of imaginal wing disc development.

Through loss- and gain-of-function genetic screens, we identified the genes gmdMAP4K3kurtzkismet and spalt, and subsequently characterised their requirements during wing development.The functional analysis we carried out consisted in the generation and analysis of loss-of-function conditions, the analysis of expression patterns using in situ hybridisation, and the determination of the sub-cellular localisation of the corresponding proteins. Our studies have established the participation of these genes in the signalling pathways Notch (gmd), Insulin (Map4K3), Hedgehog (kurtz and kismet) and TGFb (spalt). We expect that the analysis in Drosophila will uncover conserved aspects of the function of these genes, which would be relevant for normal development in vertebrates and might be related with the outcome of several human genetic disorders. Our laboratory also host two Ramon y Cajal contracts, Dr. Carlos Estella y Dra. Cristina Grande. They undertake independent projects related to pattern formation in Drosophila appendages (Dr. Carlos Estella) and body plan evolution in bilateral organisms (Dra. Cristina Grande).

(A) Drosophila melanogaster wild type wing (left) and domains of activation in the wing disc (red) of the Notch (Notch), Hedgehog (Hh), Epidermal growth factor receptor (EGFR), Wingless/Wnt (Wg) and Decapentaplegic/BMP (Dpp) signalling pathways. (B) Wing phenotypes resulting from manipulations in the activity of the Insulin (InR/Tor), Notch (Notch), Hedgehog (Hh) and Epidermal growth factor receptor (EGFR) signalling pathways, either by activation (column "Pathway activation") or by inhibition (column "Pathway inhibition"). (C) Wing phenotypes resulting from manipulations in the activity of the Wingless (Wg), decapentaplegic/BMP (dpp/BMP), Transforming growth factor b (TGFb) and Salvador/Warts/Hippo (SWH) signalling pathways, either by activation (column "Pathway activation") or by inhibition (column "Pathway inhibition").


* For external calls please dial 34 91196 followed by the extension number
Last nameNameLaboratoryExt.*e-mailProfessional category
Celis IbeasJosé Félix de4214673jfdecelis(at)cbm.csic.esE. Profesores de Investigación de Organismos Públicos de Investigación
Escolar OlíasAndrea4214673Estudiante TFG
Issa GarcíaJousef Angel4214673ja.issa(at)alumnos.urjc.esEstudiante TFM
López VareaAna4214703alopez(at)cbm.csic.esE. Técnicos Superiores Especializados de Organismos Públicos de Investigación
Martínez OstaléCristina4214703cmostale(at)cbm.csic.esTitulado Sup. Actividades Tecn. y Prof.GP1
Ruíz GómezAna4214808aruiz(at)cbm.csic.esProfesor Titular Universidad, GA
Vega CuestaPatricia4214703/4808patricia.vega(at)cbm.csic.esTco. de Investigación y Laboratorio

Relevant publications:

  • Molnar, C., Ruiz-Gómez, A., Martín, M., Rojo, S., Mayor, F. and de Celis, J. F. (2011) Role of the Drosophila non-visual b-Arrestin Kurtz in Hedgehog signalling. PLOS Genetics 7(3): e1001335.
  • Molnar, C., Casado, M., López-Varea, A., Cruz, C. and de Celis, J.F. (2012) Genetic annotation of gain-of-function screens using interference RNA and in situ hybridization of candidate genes in the Drosophila wing. Genetics 192, 741-752.
  • Organista, M. and de Celis, J. F. (2013). The Spalt transcription factors regulate cell proliferation, survival and epithelial integrity downstream of the Decapentaplegic signalling pathway. Biology Open 15;2(1):37-48.
  • Covadonga F. Hevia and Jose F. de Celis (2013).Activation and function of TGFβ signalling during Drosophila wing development and its interactions with the BMP pathway. Dev. Biol377: 138-153.
  • Jose F. de Celis (2013). Understanding the determinants of Notch interactions with its ligands. Sci Signal. 6, pe.19.

Doctoral theses:

  • Martín Resnik Docampo (2011). La proteína MAP4K3 participa, a través de mecanismos independientes, en la regulación de las rutas de señalización Tor y JNK. Universidad Autónoma de Madrid. Director Jose F. de Celis.
  • María Fernández Organista (2012). Funciones de las proteínas Spalt e identificación de sus genes diana durante el desarrollo del disco imaginal de ala de Drosophila melanogaster. Universidad Autónoma de Madrid. Director Jose F. de Celis.

NOTE! This site uses cookies and similar technologies.

If you not change browser settings, you agree to it. Learn more

I understand


What are cookies?

A cookie is a file that is downloaded to your computer when you access certain web pages. Cookies allow a web page, among other things, to store and retrieve information about the browsing habits of a user or their equipment and, depending on the information they contain and the way they use their equipment, they can be used to recognize the user.

Types of cookies

Classification of cookies is made according to a series of categories. However, it is necessary to take into account that the same cookie can be included in more than one category.

  1. Cookies according to the entity that manages them

    Depending on the entity that manages the computer or domain from which the cookies are sent and treat the data obtained, we can distinguish:

    • Own cookies: those that are sent to the user's terminal equipment from a computer or domain managed by the editor itself and from which the service requested by the user is provided.
    • Third party cookies: those that are sent to the user's terminal equipment from a computer or domain that is not managed by the publisher, but by another entity that processes the data obtained through the cookies. When cookies are installed from a computer or domain managed by the publisher itself, but the information collected through them is managed by a third party, they cannot be considered as own cookies.

  2. Cookies according to the period of time they remain activated

    Depending on the length of time that they remain activated in the terminal equipment, we can distinguish:

    • Session cookies: type of cookies designed to collect and store data while the user accesses a web page. They are usually used to store information that only is kept to provide the service requested by the user on a single occasion (e.g. a list of products purchased).
    • Persistent cookies: type of cookies in which the data is still stored in the terminal and can be accessed and processed during a period defined by the person responsible for the cookie, which can range from a few minutes to several years.

  3. Cookies according to their purpose

    Depending on the purpose for which the data obtained through cookies are processed, we can distinguish between:

    • Technical cookies: those that allow the user to navigate through a web page, platform or application and the use of different options or services that exist in it, such as controlling traffic and data communication, identifying the session, access to restricted access parts, remember the elements that make up an order, perform the purchase process of an order, make a registration or participation in an event, use security elements during navigation, store content for the broadcast videos or sound or share content through social networks.
    • Personalization cookies: those that allow the user to access the service with some predefined general characteristics based on a series of criteria in the user's terminal, such as the language, the type of browser through which the user accesses the service, the regional configuration from where you access the service, etc.
    • Analytical cookies: those that allow the person responsible for them to monitor and analyse the behaviour of the users of the websites to which they are linked. The information collected through this type of cookies is used in the measurement of the activity of the websites, applications or platforms, and for the elaboration of navigation profiles of the users of said sites, applications and platforms, in order to introduce improvements in the analysis of the data of use made by the users of the service.

Cookies used on our website

The CBMSO website uses Google Analytics. Google Analytics is a simple and easy to use tool that helps website owners to measure how users interact with the content of the site. You can consult more information about the cookies used by Google Analitycs in this link.

Acceptance of the Cookies Policy

The CBMSO assumes that you accept the use of cookies if you continue browsing, considering that it is a conscious and positive action from which the user's consent is inferred. In this regard, you are previously informed that such behaviour will be interpreted that you accept the installation and use of cookies.

Knowing this information, it is possible to carry out the following actions:

  • Accept cookies: if the user presses the acceptance button, this warning will not be displayed again when accessing any page of the portal.
  • Review the cookies policy: the user can access to this page in which the use of cookies is detailed, as well as links to modify the browser settings.

How to modify the configuration of cookies

Using your browser you can restrict, block or delete cookies from any web page. In each browser the process is different, here we show you links on this particular of the most used browsers: