

Huygens Professional Deconvolution Guide

- What is Deconvolution?

Deconvolution is a computational technique applied to images to compensate for the optical limitations of the system used in their acquisition by reducing the out-of.-focus blurring. The use of different Deconvolution algorithms is particularly effective when processing data obtained in Widefield Microscopy, Laser Scanning Confocal Microscopy (LSM), Spinning Disk Confocal Microscopy, and Super-resolution Microscopy...

"A Practical Guide to Deconvolution of Fluorescence Microscope Imagery". David S.C. Biggs

Image saving format

- Key Aspects when acquiring images to deconvolve
 - 1. The size of each pixel must satisfy the Nyquist criterion
 - 2. Avoid saturated pixels
 - 3. Optimize the Signal to Noise (S/N) ratio
 - 4. Acquire a minimum of 3 Z planes

~ .	
Syste	em

Zeiss LSM510 y LSM710 Confocal	Ism format
Zeiss LSM800 y LSM900 Confocal	.czi format
NikonA1R in vivo Confocal	.nd2 format; and the .xml file containing the acquisition information
Olympus SpinSR10 Confocal	.vsi format; and save the folder containing the ".ets" file (metadata)
Leica Stellaris 8 STED+FLIM Confocal	.lif format
Zeiss Widefield Microscopes (sCMOS y F.R.E.T.)	.stk format

For more information:

You can find detailed information about the deconvolution program "Huygens" on the following website:

https://svi.nl/Huygens-Deconvolution

- More information about the possibilities of this software could be found through the following link:

https://svi.nl/FAQ

How to Calculate pixel size of images to deconvolve

When acquiring images using a microscope and saving them, the ideal is to achieve a sampling density that meets the Nyquist criterion.

Huygens (Scientific Volume Imaging) has an online calculator where you will have to select:

https://svi.nl/NyquistCalculator

	Confocal	* Microscope type (Wide)	efield, Confocal, STED)
Numerical aperture	1,3	Objective Numerical A	perture (N.A.)
Excitation wavelength	488	nm Excitation and Emissio	n wavelenghts (nm)
Emission wavelength	520		
Ennosion wavelength	520	Number of excitation	nhotons
Number of excitation photons	1	 For Widefield Micro disk (SDCM) Confocals 2 2 photons microsci 	opes
Lens immersion refractive index	Oil 🗢 1,515	Immersion refractive inde	ex
	Calculate a Point Sprea	d Function	
	Results This is the parameter list used in this	s calculation:	
	Parameter		Value
	Microscope type	`.O	Confocal
	Numerical aperture	~~~~	1.3
	Excitation wavelength		402
	Emission wavelength		450
	Number of excitation photons		1
	Lens immersion refractive index		1.515
	The optical axis lays along z. Your N	lyquist sampling is:	
	x: 38 nm		
	y: 38 nm	nded pixel size (XY)	
	z: 136 nm Recommer	nded step size for Z-Stack	
	— Set your zooms and scanning — Calibrate and set your z-stepped	steps so that each pixel covers a x-y area of 3 or so that it takes stops of 136 nm when acquir	8 nm × 38 nm (or smaller) ring a 3D stack (or smaller)
		- · · · · · · · · · · · · · · · · · · ·	om, z-stack step size)
Depending on t	he values obtained (X, Y, Z must be adjusted	 the different parameters (zoc to satisfy these requirements. 	

In cases where <u>small pinhole values (< 0.5 AU)</u> are used, these sizes can be **increased up to 1.3 times**; and in the case of using <u>large pinholes (> 4 AU)</u>, these sizes can be **increased up to 2 times**.

the quality of the Deconvolution.

STED IMAGE DECONVOLUTION

When acquiring Super-resolution images (STED), 86X (1.2) and/or 100X (1.4) objectives will be used.

To perform a correct Deconvolution of the acquired images, we will use the SVI Huygens online calculator to get the recommended pixel size (XY) and Z-step needed in our image acquisition.

https:/	/svi.nl/M	lyquistCa	lculator

<i>s</i> 중 Nyquist rate an	d PSF calculator	
Microscope type	STED	
Numerical aperture	1,3	Objective numerical aperture: 1.2 (86X obj.) or 1.4 (100X obj.)
Excitation wavelength	488	Excitation and emission peak wavelengths of the fluorophore
Emission wavelength	520	nm
Number of excitation photons	1	
Lens immersion refractive index	Oil 🗢 1,515	Immersion medium Water (86X) or Oil (100X)
Backprojected pinhole radius	250	Backprojected pinhole value of the selected objective. See below
STED Depletion wavelength	775 r	Depletion laser wavelength (775 nm)
STED 3x percentage	0	STED Depletion Laser Power Percentage
STED Saturation factor	30,0	Percentage used in the z (axial) depletion beam (STED 3D)
	Calculate a Point Spread Function	tion
A true Nyquist rate does not exist for sampling rate that is both practical a information realistically available.	STED. Instead, we calculate a nd high enough to capture all	
j.	Calculate 🖬	

How to calculate the Backprojected pinhole?

To calculate the Backprojected Pinhole we will use the online calculator available at the following link:

https://svi.nl/LeicaConfocal_TCS_SP8

(1) In case of adjusting the Pinhole in terms of Airy Units (AU)

In this case, we have to take into account that Leica presents the Pinhole value in reference to the 580 nm excitation line; so that when we adjust the AU to our reference channel, we will have to see what this value is for the wavelength 580 nm; along with the numerical aperture of the objective used.

(2) In case of adjusting the Pinhole in terms of microns (µm)

In this case, we will set the Pinhole to be displayed as microns (μ m) in the LAS X program, noting that value and the objective magnification to perform the calculations.

Number of Airy disks	
Lens numerical aperture	1.3
Calculate	

Pinhole side (microns)	
Objective magnification	100
Calculate	

- ZEISS CONFOCALS

LSM510 vertical & LSM710	(Inverted and Vertical)	LSM800 Inverted a	nd LSM900 Vertical
Objective (Immersion Media)	Numerical Aperture (N.A)	Objective (Immersion Media)	Numerical Aperture (N.A)
25X (Oil)	0.8	20X (Air)	0.8
40X (Oil)	1.3	25X (Oil)	0.8
63X (Oil)	1.4	40X (Oil)	1.3
100X (Oil)	1.4	63X (Oil)	1.4
63X (Water) LSM710 Inverted only	1.2	100X (Oil)	1.4
100X (Oil) LSM510 vertical only	1.3	63X (Water) LSM800 Inverted only	1.2

- OLYMPUS SPINSR10 CONFOCAL

Objective (Immersion Media)	Numerical Aperture (N.A)
10X (Air)	0.4
20X (Air)	0.8
30X (Silicone)	1.05
40X (Air)	0.95
40X (Silicone)	1.25
60X (Silicone)	1.3
100X (Oil)	1.45

	50 µm Disk +	Lens 1X	SoRa Disk +	Lens 1X	SoRa Disk + I	ens 3.2X
Objective	Backprojected Pinhole (nm)	Pinhole Spacing (μm)	Backprojected Pinhole (nm)	Pinhole Spacing (μm)	Backprojected Pinhole (nm)	Pinhole Spacing (μm)
10X	2500	25.3	1250	12.7	390.63	3.95
20X	1250	12.7	625	6.4	195.31	1.98
40X	625	6.33	313	3.17	97.66	0.99
60X	416.7	4.22	208.4	2.11	65.11	0.66
100X	250	2.53	125	1.27	39.06	0.40

IMPORTANT WHEN DECONVOLVING SPINNING DISK IMAGES

When deconvolving spinning disk images, we have to take into account which **Disk (50 μm or SoRa)** and **magnification lens (1X or 3.2X)** combination was used in the image acquisition, since the Backprojected pinhole and the pinhole spacing values vary depending on the combination selected.

Likewise, we must check if the excitation wavelengths coincide with the channels that we want to deconvolve (405: BFP, DAPI, Hoechst; 488: Alexa 488, FITC, GFP; 561: Alexa 555, Alexa 594, Rhodamine, TexasRed, TRITC; 640: Alexa647, Cy5, To-Pro3).

In the Microscopic Parameters window, we will have to check if the values shown agrees with the combination that was used during the image acquisition.

NIKON A1R IN VIVO CONFOCAL

Objective (Immersion Media)	Numerical Aperture (N.A)
20X (Aire / <i>Air</i>)	0.75
20X (Aceite / <i>Oil</i>)	0.75
40X (Aceite / <i>Oil</i>)	1.3
60X (Aceite / <i>Oil</i>)	1.4
60X (Agua / Water)	1.2

LEICA STELLARIS 8 STED+FLIM CONFOCAL _

207 (All C / All)	0.75
20X (Aceite / <i>Oil</i>)	0.75
40X (Aceite / Oil)	1.3
60X (Aceite / <i>Oil</i>)	1.4
60X (Agua / Water)	1.2
LIM CONFOCAL Objective (Immersion Media)	Numerical Aperture (N.A)
20X (Aire / <i>Air</i>)	0.75
40X (Aceite / <i>Oil</i>)	1.3
63X (Aceite / <i>Oil</i>)	1.4
86X (Agua / Water)	1.2
100X (Aceite / <i>Oil</i>)	1.4

WIDEFIELD MICROSCOPES: F.R.E.T. and SCMOS (ZEISS)

FRET		sCMOS	
Objective (Immersion Media)	Numerical Aperture (N.A)	Objective (Immersion Media)	Numerical Aperture (N.A)
10X (Air)	0.45	10X (Air)	0.3
20X (Air)	0.8	20X (Oil)	0.5
25X (Oil)	0.8	25X (Oil)	0.8
40X (Oil)	1.3	40X (Oil)	1.3
63X (Oil)	1.4	63X (Oil)	1.4
100X (Oil)	1.3	100X (Oil)	1.3
40X LD (Air)	0.6	40X (Air)	0.6
SERVICIODY			