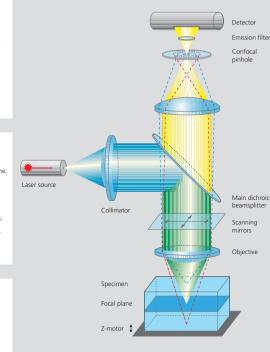
Microscopy from Carl Zeiss

Laser


- Light source projected into specimen
- Laser power: adjustable via attenuation device
 (AOTE, AOM, MOTE) and tube current setting (Ar)
- Lifetime Ar: prolonged by using lower tube current; but laser noise will be increased (8 A = minimum noise)
- Stand-by mode: prolongs laser lifetime; not suitable for image acquisition
- Laser line: can be chosen via selection device (AOTE MOTE) dependent on fluorescent dye. Generally: the shorter the wavelength, the higher the resolution
- Application goals: (1) Protect specimen (reduction of dye bleaching and phototoxicity) by reduction of laser power. (2) Maximize fluorescence signal (higher SNR) by longer nivel dwell times or averaging

Scanning Mirrors

- Scanning unit moves focused laser beam across specimen line hy line
- Scanning speed: defines frame rate (frames/sec) and
- pixel time, i.e. time the specimen is illuminated
 Pixel time: influences SNR of image: the longer the pixel time. the more photons per pixel, the less noise in the picture;
- but bleaching of fluorochromes may increase <u>Pixel resolution</u>: maximum resolution can be achieved if
- pixel size is set correctly (at least 4 x 4 pixels (x, y) per smallest detail) → directly adjustable via scan zoom
- x/y frame size: variable from 4 x 2 up to 2048 x 2048 pixels; maximum frame rate with 512 x 512 pixels 5 frames/sec (bidirectional scan ,); unidirectional scan → : slower by factor 2

7-Motor

- Focusing the specimen acquisition of image stacks or x-z section
- · z-interval: distance between two ontical slices (sten size of z-motor: min. 25 nm)
- Optimum z-motor step size: 0.5 x optical slice thickness (compare: min, slice thickness about 340 nm for NA = 1.4. $n = 1.52, \lambda = 488 \text{ nm}$
- Optional: fast z-scanning stage (HRZ) fast piezo objectiv focus

Photomultiplier (PMT)

- Detector pixelwise detection of photons emitted/ reflected by the respective specimen detail • Parameters: "Detector Gain"= PMT high voltage.
- "Amplifier Offset" = black level setting, "Amplifier Gain "= electronic post-amplification
- <u>Calibration</u>: "Amplifier Offset" on image background (object-free area). "Detector Gain" according to scanned image (object); setting aid = "Range Indicato (→ "Palette"). Goal: least number of overmodulated (red, Gain) and undermodulated (blue, Offset) pixels
- <u>Signal amplification</u>: First exploit "Detector Gain" slider before "Amplifier Gain" > 1

Confocal Pinhole

- Depth discrimination confocal aperture to prevent detection of out-of-focus light (optical sectioning)
- <u>Diameter</u>: determines thickness of optical slice; optimum diameter: 1 Airy unit = best trade-off between depth
- discrimination capability and efficiency
 x/v position: factory-adjusted for all beam path configurations; can be modified manually (->"Maintain-Pinhole")

Beam Splitter

- Fluorescence beam path definable by combination of main (HFT) and secondary (NFT) dichroic mirrors and emission filters (BP = bandpass, LP = longpass, KP = shortpass) (→ "Acquire" – "Config")
- HET: separates excitation and emission light
 NFT: effects spectral division of (different) fluorescence
- emissions (e.g. NFT 545: reflects light of λ < 545nm and transmits light of $\lambda > 545$ nm) • <u>BP, LP, KP</u>: determines bandwidth of fluorescence
- emission for the respective channel (e.g. LP 505: $\lambda \ge 505 \text{ nm} \rightarrow \text{detection}$)

Objective Lens

Optical image formation – determines properties

- of image quality such as resolution (x, y, z)
 Numerical Aperture (N.A.): determines imaged spot size (jointly with wavelength), and substantially influences the minimum optical slice thickness achievable
- <u>Refractive index (n)</u>: match n_{immersion liquid} with Ospecimen mounting medium for better image quality
- Best confocal multifluorescence image (VIS, UV): use water immersion objectives with anochromatic correction (C- Apochromat)

3 Steps to Get a Confocal Image

View specimen in VIS mode

Focus the specimen in epi-fluorescence mode using the binocular and center the part of interest; select fluore soing are bifloctual and center the part of interest; select fluorescence filter cube according to application (e.g. FITC or Cy3) via SW (window "Microscope Control"); match the field of view: change to appropriate objective magnification (consider use of correct immersion medium).

Load an LSM configuration

Scan an image

and scans an image

Activate LSM mode (operate manual tube slider or button "LSM"). Open window "Configuration control", and select a predefined configuration from list (Single Track). select a precenteed configuration from its (Single Irack). A click on "Apply" automatically sets up the system: laser lines, attenuation, emission filters, beam splitters (HFT, NFT), pinhole diameter, detector settings (channels, gain, offset). Or: Click on "Reuse" button (stored image/image database window) to restore settings of a previous experiment.

10 DO

œ

More signal!

· Change to longer pixel dwell times by reducing scanning speed

How to Enhance Image Quality

- Use "Average" method: Calculation of "Sum" or "Mean" value of pixels of consecutive "Line" or "Frame" scans.
- Increase bandwidth of emission filter (e.g. LP instead of BP).
- · Enlarge pinhole diameter; Note: optical slice thickness increases accordingly.
- · Increase excitation energy (laser power); but pay attention to bleaching, saturation and phototoxic effects

More details!

- Use objective with higher numerical aperture (NA); x/y-resolution ~ 1/NA, z-resolution ~ 1/NA2.
 Increase "FrameSize" = number of pixels per line + lines per frame,
- Increase Trainestee induced of parts per line + lines per line, e.g. 1024 x1024 or 2048 x2048 (min. 4 x 2). Optimize scan zoom (Z), i.e. pixel size ≤ 0.25 x diameter of Airy disk (e.g.: Objective 40x, NA 1.3, I = 488 nm => Z = 4.56).
- Increase dynamic range (change from 8 to 12 bit per pixel).

More reliability !

- Use Multitracking: very fast switching of excitation wavelengths; prevents crosstalk of signals between channels; predefined configurations available.
- Use ROI (Region Of Interest) function: significantly reduces excited area of specimen and increases acquisition rate at constant SNR; several ROIs of any shape can be defined and used simultaneously.

The Confocal Laser Scanning Microscope

Click on "Find" button (right row in window "Scan Control") => System automatically opens image window, optimizes detector settings (matches PMT gain and offset to dynamic range of 8 or 12 bit),

See operating manual for scanning a stack of slices, time series etc.

We make it visible.