Yeast enzymes bioengineering to generate bioactive compounds

Research summary:

We work with microorganisms of biotechnological interest, mainly fungi and yeasts, producers of bioactive compounds. We try to connect the generation of knowledge to the development of biotechnological applications. Basically we focus on the characterization of new enzymes producing bioactive compounds, the analysis of their structural-functional determinants, the operational improvement using molecular biology tools and in obtaining and characterization of new molecules with potential industrial utility. We have patented in different countries the industrial applicability of most proteins characterized and designed methods for their attachment to solid supports.

Image

Figure 1. The Xd-INV from Xanthophyllomyces dendrorhous 3D-Structure, a fructofuranosidase producing the prebiotic neokestose. Close-up view of active site including neo-erlose (fructosil maltose).

Image

Figure 2. The conformation of the substrates at the Ffase active site. A. Six units of inulin (left) and fructosylnystose (right) molecules represented as spheres. B. Inulin (brown) and fructosylnystose (lime green) moieties in stick representation are superimposed.

During the last years we have been characterizing and studying several fungi and non-conventional yeast proteins (from genera Xanthophyllomyces, Schwanniomyces, Rhodotorula, etc.) showing glycosyltransferase activity, and applicable in the production of sugars with prebiotic properties. All are glycosylhydrolases (GH) structurally included in family GH32, 31, 13 or 18. Indeed, we have resolved the 3-D structure of the first yeast protein including in family GH32, assigned a function to the beta-sandwich domain that is present in all members of this family and proved that the oligomerization is directly involved in the substrate recognition and specificity. We have obtained numerous enzymatic variants that increase or alter the biosynthetic product patterns. Recently we have found that some of the characterized enzymes can glycosylate compounds with aromatic rings such as the hydroxytyrosol or pterostilbene (both antioxidants), which confers them a special biotechnological interest. We intend to extend our study to hydrolases including in other structural families, to increase and modify the transferase/biosynthetic activity of the enzymes studied, to scale up to industrial level the enzyme production and the products generated, as well as to validate the biological activity or give new uses to the molecules obtained. Objectives included in those of the consortia Glicoenz, Fish4Fish and a project founded by the Fundación Ramon Areces (XIX Concurso Nacional-Ciencias de la Vida y la Materia).

Image


* For external calls please dial 34 91196 followed by the extension number
Last nameNameLaboratoryExt.*e-mailProfessional category
Fernández LobatoMaría1024492mfernandez(at)cbm.csic.esCatedrático Universidad, GA
García GonzálezDiego Martín1024521diegom.garcia(at)cbm.csic.esTit.Sup.Activ.Técn.y Profes. GP1
Kidibule Peter Elias1024521pkidibule(at)cbm.csic.esTit.Sup.Activ.Técn.y Profes. GP1 66%
Merdzo KunovacZoran1024521zoran(at)cbm.csic.esTco. de Investigación y Laboratorio
Míguez RodríguezNoa1024492Titulado Sup. Actividades Tecn. y Prof.GP1 66%
Minguet LobatoMarina1024521m.minguet(at)cbm.csic.esAyudante Investigación
Narmontaite Egle4521Tco. de Investigación y Laboratorio
Ramiro MartínezPaula1024521Estudiante TFM
Remacha MorenoMiguel1024521mremacha(at)cbm.csic.esProfesor Titular Universidad, GA

Relevant publications:

  • Garcia-Gonzalez, M., Plou, F.J., Cervantes, F.V., Remacha, M., Poveda, A., Jiménez-Barbero3, J., Fernandez-Lobato, M. (2019) Efficient production of isomelezitose by a glucosyltransferase activity in Metschnikowia reukaufii cell extracts. Microbial Biotechnol. 12: 1274-1285.  Open Access. DOI: 10.1111/1751-7915.13490 
  • Ramírez-Escudero, M., Miguez, N., Gimeno-Perez, M., Ballesteros, A.O., Fernández-Lobato, M., Plou, F.J., and Sanz- Aparicio, J. (2019)  Deciphering the molecular specificity of phenolic compounds as  inhibitors or glycosyl acceptors of β-fructofuranosidase from Xanthophyllomyces dendrorhous.  Scientific Reports 9, 17441. Open Access. https://www.nature.com/articles/s41598-019-53948-y
  • Kidibule, P.E., Santos-Moriano, P., Jiménez-Ortega, E., Ramírez-Escudero, M., Limón, M.C., Remacha, M., Plou, F.J., Sanz-Aparicio, J., Fernández-Lobato, M.  (2018) Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity. Microb. Cell. Fact. 17, 47. Open Access. doi:10.1186/s12934-018-0895-x
  • Míguez, N., Ramírez-Escudero, M., Gimeno-Pérez, M., Poveda, A., Jiménez-Barbero, J. Ballesteros, A. O., Fernández-Lobato, M., Sanz-Aparicio, J. and Plou F. J. (2018) Fructosylation of hydroxytyrosol by the β-fructofuranosidase from Xanthophyllomyces dendrorhous: Insights into the molecular basis of the enzyme specificity. ChemCatChem. 10(21). doi.org/10.1002/cctc.201801171
  • Ramírez-Escudero, M., M. Gimeno-Pérez, B. González, D. Linde, Z. Merdzo, M. Fernández-Lobato* and J. Sanz-Aparicio* (2016) Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-glycosylation in Oligomerization and Activity. J. Biol. Chem. 29 (13): 6843-6857 (doi/10.1074/jbc.M115.708495). *Both corresponding authors.
  • Gimeno-Pérez,M., D. Linde, L. Fernández-Arrojo, F. J. Plou, and M. Fernández Lobato (2015) Heterologous overproduction of β-fructofuranosidase from Xanthophyllomyces dendrorhous, an enzyme producing prebiotic sugars. Appl. Microbiol. Biotechnol. 98 (8) 3459-3467 (doi: 10.1007/s00253-014-6145-1).
  • de Abreu, M.A., Alvaro-Benito, M., Plou, F.J., Fernández Lobato, M.* and Alcalde, M.* (2013) Synthesis of 6-kestose using a highly efficient β-fructofuranosidase engineered by directed evolution. Adv. Synth. Catal. 355 (9), 1698-1702. * Both corresponding authors. (doi: 10.1002/adsc.201200769).
  • Linde, D., Estévez, M., Plou, F. J. and Fernández Lobato, M. (2012) Analysis of the neofructooligosaccharides production mediated by the extracellular β-fructofuranosidase Xd-INV from Xanthophyllomyces dendrorhous. Bioresour. Technol. 109, 123-130 (doi: 10.1016/j.biortech.2012.01.023)
  • Alvaro-Benito, M., Sainz-Polo, M.A., González, B., Plou, F.J., Fernández-Lobato*, M. and Sanz-Aparicio*, J. (2012) Structural and kinetic insight reveal that the amino acid pair Gln-228/Asn-254 modulates the transfructosylating specificity of Schwanniomyces occidentalis β-fructofuranosidase, and enzyme that produces prebiotics. J. Biol. Chem. 287, 19674-19686. *Both corresponding authors. (doi:10.1074/jbc.M112.355503)

Doctoral theses:

  • María Gimeno-Pérez (2019) Estudio estructural de la β-fructofuranosidase de Xanthophyllomyces dendrorhous y su empleo para la producción de oligosacáridos prebióticos y otros dereivados fructosilados. UAM
  • Patricia Gutiérrez Alonso (2013) Caracterización de dos glicosiltransferasas de oligosacáridos prebióticos de las levaduras Phaffia rhodozyma y Rhodotorula dairenensis. UAM
  • Miguel Antonio de Abreu Felipe (2011) Studies aimed at improving the funtionality of non-conventional yeast enzymes able to synthesize prebiotic oligosaccarides. UAM. European Program
  • Miguel Álvaro Benito (2011) The study of β-fructofuranosidase from Schwanniomyces occidentalis reveals new functional elements in the family GH32 of glycosyltransferases and an unconventional genetic code use in this yeast. UAM. European Program
  • María Dolores Linde López (2010) Caracterización Bioquímica, molecular y estructural de una b-fructofuranosidasa con capacidad transferasa de la levadura Phaffia rhodozyma aplicable a la producción de oligosacáridos prebióticos. UAM

Patents:

  • P200402994. New enzyme for the prebiotic production: WO 2006/064078 A1; PCT-ES2005/070177; Europa No 05825223.0. Primer premio a la mejor patente Madrid+d 2008.
  • P200501875. New fructofuranosydase for prebiotic oligosaccharides obtaining: PCT-ES2006/000435. Europa Nº 06807883.1; USA No.  11/997.233
  • P200503195. “New fructofuranosydase for the 6-kestose production: PCT-ES2006/000693; Europea No. 06841745-0; USA No. 12/159.164; Japón No. 2008-547993.
  • P200930001. Biocatalizador inmovilizado basado en alginato para la biotransformación de carbohidratos: PCT-ES2010/070104

NOTE! This site uses cookies and similar technologies.

If you not change browser settings, you agree to it. Learn more

I understand

COOKIES POLICY

What are cookies?

A cookie is a file that is downloaded to your computer when you access certain web pages. Cookies allow a web page, among other things, to store and retrieve information about the browsing habits of a user or their equipment and, depending on the information they contain and the way they use their equipment, they can be used to recognize the user.

Types of cookies

Classification of cookies is made according to a series of categories. However, it is necessary to take into account that the same cookie can be included in more than one category.

  1. Cookies according to the entity that manages them

    Depending on the entity that manages the computer or domain from which the cookies are sent and treat the data obtained, we can distinguish:

    • Own cookies: those that are sent to the user's terminal equipment from a computer or domain managed by the editor itself and from which the service requested by the user is provided.
    • Third party cookies: those that are sent to the user's terminal equipment from a computer or domain that is not managed by the publisher, but by another entity that processes the data obtained through the cookies. When cookies are installed from a computer or domain managed by the publisher itself, but the information collected through them is managed by a third party, they cannot be considered as own cookies.

  2. Cookies according to the period of time they remain activated

    Depending on the length of time that they remain activated in the terminal equipment, we can distinguish:

    • Session cookies: type of cookies designed to collect and store data while the user accesses a web page. They are usually used to store information that only is kept to provide the service requested by the user on a single occasion (e.g. a list of products purchased).
    • Persistent cookies: type of cookies in which the data is still stored in the terminal and can be accessed and processed during a period defined by the person responsible for the cookie, which can range from a few minutes to several years.

  3. Cookies according to their purpose

    Depending on the purpose for which the data obtained through cookies are processed, we can distinguish between:

    • Technical cookies: those that allow the user to navigate through a web page, platform or application and the use of different options or services that exist in it, such as controlling traffic and data communication, identifying the session, access to restricted access parts, remember the elements that make up an order, perform the purchase process of an order, make a registration or participation in an event, use security elements during navigation, store content for the broadcast videos or sound or share content through social networks.
    • Personalization cookies: those that allow the user to access the service with some predefined general characteristics based on a series of criteria in the user's terminal, such as the language, the type of browser through which the user accesses the service, the regional configuration from where you access the service, etc.
    • Analytical cookies: those that allow the person responsible for them to monitor and analyse the behaviour of the users of the websites to which they are linked. The information collected through this type of cookies is used in the measurement of the activity of the websites, applications or platforms, and for the elaboration of navigation profiles of the users of said sites, applications and platforms, in order to introduce improvements in the analysis of the data of use made by the users of the service.

Cookies used on our website

The CBMSO website uses Google Analytics. Google Analytics is a simple and easy to use tool that helps website owners to measure how users interact with the content of the site. You can consult more information about the cookies used by Google Analitycs in this link.

Acceptance of the Cookies Policy

The CBMSO assumes that you accept the use of cookies if you continue browsing, considering that it is a conscious and positive action from which the user's consent is inferred. In this regard, you are previously informed that such behaviour will be interpreted that you accept the installation and use of cookies.

Knowing this information, it is possible to carry out the following actions:

  • Accept cookies: if the user presses the acceptance button, this warning will not be displayed again when accessing any page of the portal.
  • Review the cookies policy: the user can access to this page in which the use of cookies is detailed, as well as links to modify the browser settings.

How to modify the configuration of cookies

Using your browser you can restrict, block or delete cookies from any web page. In each browser the process is different, here we show you links on this particular of the most used browsers: