Representative publications

Coordinate β-adrenergic inhibition of mitochondrial activity and angiogenesis arrest tumor growth
Cristina Nuevo-Tapioles, Fulvio Santacatterina, Konstantinos Stamatakis, Cristina Núñez de Arenas, Marta Gómez de Cedrón, Laura Formentini, José M. Cuezva

Mitochondrial metabolism has emerged as a promising target against the mechanisms of tumor growth. Herein, we have screened an FDA-approved library to identify drugs that inhibit mitochondrial respiration. The β1-blocker nebivolol specifically hinders oxidative phosphorylation in cancer cells by concertedly inhibiting Complex I and ATP synthase activities. Complex I inhibition is mediated by interfering the phosphorylation of NDUFS7. Inhibition of the ATP synthase is exerted by the overexpression and binding of the ATPase Inhibitory Factor 1 (IF1) to the enzyme. Remarkably, nebivolol also arrests tumor angiogenesis by arresting endothelial cell proliferation. Altogether, targeting mitochondria and angiogenesis triggers a metabolic and oxidative stress crisis that restricts the growth of colon and breast carcinomas. Nebivolol holds great promise to be repurposed for the treatment of cancer patients.

Pathogenic SREK1 decrease in Huntington’s disease lowers TAF1 mimicking X-linked dystonia parkinsonism
Ivó H Hernández, Jorge R Cabrera, María Santos-Galindo, Manuel Sánchez-Martín, Verónica Domínguez, Ramón García-Escudero, María J Pérez-Álvarez, Belén Pintado, José J Lucas

Huntington’s disease and X-linked dystonia parkinsonism are two monogenic basal ganglia model diseases. Huntington’s disease is caused by a polyglutamine-encoding CAG repeat expansion in the Huntingtin (HTT) gene leading to several toxic interactions of both the expanded CAG-containing mRNA and the polyglutamine-containing protein, while X-linked dystonia parkinsonism is caused by a retrotransposon insertion in the TAF1 gene, which decreases expression of this core scaffold of the basal transcription factor complex TFIID. SRSF6 is an RNA-binding protein of the serine and arginine-rich (SR) protein family that interacts with expanded CAG mRNA and is sequestered into the characteristic polyglutamine-containing inclusion bodies of Huntington’s disease brains. Here we report decreased levels of the SRSF6 interactor and regulator SREK1—another SR protein involved in RNA processing—which includes TAF1 as one of its targets. This led us to hypothesize that Huntington’s disease and X-linked dystonia parkinsonism pathogeneses converge in TAF1 alteration. We show that diminishing SRSF6 through RNA interference in human neuroblastoma cells leads to a decrease in SREK1 levels, which, in turn, suffices to cause diminished TAF1 levels. We also observed decreased SREK1 and TAF1 levels in striatum of Huntington’s disease patients and transgenic model mice. We then generated mice with neuronal transgenic expression of SREK1 (TgSREK1 mice) that, interestingly, showed transcriptomic alterations complementary to those in Huntington’s disease mice. Most importantly, by combining Huntington’s disease and TgSREK1 mice we verify that SREK1 overexpression corrects TAF1 deficiency and attenuates striatal atrophy and motor phenotype of Huntington’s disease mice. Our results therefore demonstrate that altered RNA processing upon SREK1 dysregulation plays a key role in Huntington’s disease pathogenesis and pinpoint TAF1 as a likely general determinant of selective vulnerability of the striatum in multiple neurological disorders.

T cells with dysfunctional mitochondria induce multimorbidity and premature senescence
Gabriela Desdín-Micó, Gonzalo Soto-Heredero, Juan Francisco Aranda, Jorge Oller, Elisa Carrasco, Enrique Gabandé-Rodríguez, Eva Maria Blanco, Arantzazu Alfranca, Lorena Cussó, Manuel Desco, Borja Ibañez, Arancha R. Gortazar, Pablo Fernández-Marcos, Maria N. Navarro, Bruno Hernaez, Antonio Alcamí, Francesc Baixauli, María Mittelbrunn

The effect of immunometabolism on age-associated diseases remains uncertain. In this work, we show that T cells with dysfunctional mitochondria owing to mitochondrial transcription factor A (TFAM) deficiency act as accelerators of senescence. In mice, these cells instigate multiple aging-related features, including metabolic, cognitive, physical, and cardiovascular alterations, which together result in premature death. T cell metabolic failure induces the accumulation of circulating cytokines, which resembles the chronic inflammation that is characteristic of aging (“inflammaging”). This cytokine storm itself acts as a systemic inducer of senescence. Blocking tumor necrosis factor–α signaling or preventing senescence with nicotinamide adenine dinucleotide precursors partially rescues premature aging in mice with Tfam-deficient T cells. Thus, T cells can regulate organismal fitness and life span, which highlights the importance of tight immunometabolic control in both aging and the onset of age-associated diseases.

Dysfunctional oxidative phosphorylation shunts branched‐chain amino acid catabolism onto lipogenesis in skeletal muscle
Cristina Sánchez‐González, Cristina Nuevo‐Tapioles, Juan Cruz Herrero Martín, Marta P Pereira, Sandra Serrano Sanz, Ana Ramírez de Molina, José M Cuezva, Laura Formentini

It is controversial whether mitochondrial dysfunction in skeletal muscle is the cause or consequence of metabolic disorders. Herein, we demonstrate that in vivo inhibition of mitochondrial ATP synthase in muscle alters whole‐body lipid homeostasis. Mice with restrained mitochondrial ATP synthase activity presented intrafiber lipid droplets, dysregulation of acyl‐glycerides, and higher visceral adipose tissue deposits, poising these animals to insulin resistance. This mitochondrial energy crisis increases lactate production, prevents fatty acid β‐oxidation, and forces the catabolism of branched‐chain amino acids (BCAA) to provide acetyl‐CoA for de novo lipid synthesis. In turn, muscle accumulation of acetyl‐CoA leads to acetylation‐dependent inhibition of mitochondrial respiratory complex II enhancing oxidative phosphorylation dysfunction which results in augmented ROS production. By screening 702 FDA‐approved drugs, we identified edaravone as a potent mitochondrial antioxidant and enhancer. Edaravone administration restored ROS and lipid homeostasis in skeletal muscle and reinstated insulin sensitivity. Our results suggest that muscular mitochondrial perturbations are causative of metabolic disorders and that edaravone is a potential treatment for these diseases.

Visualization of Single Molecules Building a Viral Capsid Protein Lattice through Stochastic Pathways
Alejandro Valbuena, Sourav Maity, Mauricio G. Mateu, Wouter H. Roos

Direct visualization of pathways followed by single molecules while they spontaneously self-assemble into supramolecular biological machines may provide fundamental knowledge to guide molecular therapeutics and the bottom-up design of nanomaterials and nanodevices. Here, high-speed atomic force microscopy is used to visualize self-assembly of the bidimensional lattice of protein molecules that constitutes the framework of the mature human immunodeficiency virus capsid. By real-time imaging of the assembly reaction, individual transient intermediates and reaction pathways followed by single molecules could be revealed. As when assembling a jigsaw puzzle, the capsid protein lattice is randomly built. Lattice patches grow independently from separate nucleation events whereby individual molecules follow different paths. Protein subunits can be added individually, while others form oligomers before joining a lattice or are occasionally removed from the latter. Direct real-time imaging of supramolecular self-assembly has revealed a complex, chaotic process involving multiple routes followed by individual molecules that are inaccessible to bulk (averaging) techniques.

Tetraspanin CD81 regulates HSV-1 infection
Beatriz Benayas, Isabel Sastre, Soraya López-Martín, Adrian Oo, Baek Kim, Maria J. Bullido, Jesús Aldudo, María Yáñez-Mó

Different members of the tetraspanin superfamily have been described to regulate different virus infectious cycles at several stages: viral entry, viral replication or virion exit or infectivity. In addition, tetraspanin CD81 regulates HIV reverse transcription through its association with the dNTP hydrolase SAMHD1. Here we aimed at analysing the role of CD81 in Herpes simplex virus 1 infectivity using a neuroblastoma cell model. For this purpose, we generated a CD81 KO cell line using the CRISPR/Cas9 technology. Despite being CD81 a plasma membrane protein, CD81 KO cells showed no defects in viral entry nor in the expression of early protein markers. In contrast, glycoprotein B and C, which require viral DNA replication for their expression, were significantly reduced in CD81 KO infected cells. Indeed, HSV-1 DNA replication and the formation of new infectious particles were severely compromised in CD81 KO cells. We could not detect significant changes in SAMHD1 total expression levels, but a relocalization into endosomal structures was observed in CD81 KO cells. In summary, CD81 KO cells showed impaired viral DNA replication and produced greatly diminished viral titers.

Inactivation of the dimeric RappLS20 anti-repressor of the conjugation operon is mediated by peptide-induced tetramerization
Isidro Crespo, Nerea Bernardo, Andrés Miguel-Arribas, Praveen K Singh, Juan R Luque-Ortega, Carlos Alfonso, Marc Malfois, Wilfried J J Meijer, Dirk Roeland Boer

Quorum sensing allows bacterial cells to communicate through the release of soluble signaling molecules into the surrounding medium. It plays a pivotal role in controlling bacterial conjugation in Gram-positive cells, a process that has tremendous impact on health. Intracellular regulatory proteins of the RRNPP family are common targets of these signaling molecules. The RRNPP family of gene regulators bind signaling molecules at their C-terminal domain (CTD), but have highly divergent functionalities at their N-terminal effector domains (NTD). This divergence is also reflected in the functional states of the proteins, and is highly interesting from an evolutionary perspective. RappLS20 is an RRNPP encoded on the Bacillus subtilis plasmid pLS20. It relieves the gene repression effectuated by RcopLS20 in the absence of the mature pLS20 signaling peptide Phr*pLS20. We report here an in-depth structural study of apo and Phr*pLS20-bound states of RappLS20 at various levels of atomic detail. We show that apo-RappLS20 is dimeric and that Phr*pLS20-bound Rap forms NTD-mediated tetramers. In addition, we show that RappLS20 binds RcopLS20 directly in the absence of Phr*pLS20 and that addition of Phr*pLS20 releases RcopLS20 from RappLS20. This allows RcopLS20 to bind the promotor region of crucial conjugation genes blocking their expression.

Roles of plant retinoblastoma protein: cell cycle and beyond
Bénédicte Desvoyes, Crisanto Gutierrez

The human retinoblastoma (RB1) protein is a tumor suppressor that negatively regulates cell cycle progression through its interaction with members of the E2F/DP family of transcription factors. However, RB‐related (RBR) proteins are an early acquisition during eukaryote evolution present in plant lineages, including unicellular algae, ancient plants (ferns, lycophytes, liverworts, mosses), gymnosperms, and angiosperms. The main RBR protein domains and interactions with E2Fs are conserved in all eukaryotes and not only regulate the G1/S transition but also the G2/M transition, as part of DREAM complexes. RBR proteins are also important for asymmetric cell division, stem cell maintenance, and the DNA damage response (DDR). RBR proteins play crucial roles at every developmental phase transition, in association with chromatin factors, as well as during the reproductive phase during female and male gametes production and embryo development. Here, we review the processes where plant RBR proteins play a role and discuss possible avenues of research to obtain a full picture of the multifunctional roles of RBR for plant life.

Temporal groups of lineage-related neurons have different neuropeptidergic fates and related functions in the Drosophila melanogaster CNS
Laura Díaz-de-la-Peña, Leila Maestro-Paramio, Fernando J. Díaz-Benjumea, Pilar Herrero

The central nervous system (CNS) of Drosophila is comprised of the brain and the ventral nerve cord (VNC), which are the homologous structures of the vertebrate brain and the spinal cord, respectively. Neurons of the CNS arise from neural stem cells called neuroblasts (NBs). Each neuroblast gives rise to a specific repertory of cell types whose fate is unknown in most lineages. A combination of spatial and temporal genetic cues defines the fate of each neuron. We studied the origin and specification of a group of peptidergic neurons present in several abdominal segments of the larval VNC that are characterized by the expression of the neuropeptide GPB5, the GPB5-expressing neurons (GPB5-ENs). Our data reveal that the progenitor NB that generates the GPB5-ENs also generates the abdominal leucokinergic neurons (ABLKs) in two different temporal windows. We also show that these two set of neurons share the same axonal projections in larvae and in adults and, as previously suggested, may both function in hydrosaline regulation. Our genetic analysis of potential specification determinants reveals that Klumpfuss (klu) and huckebein (hkb) are involved in the specification of the GPB5 cell fate. Additionally, we show that GPB5-ENs have a role in starvation resistance and longevity; however, their role in desiccation and ionic stress resistance is not as clear. We hypothesize that the neurons arising from the same neuroblast lineage are both architecturally similar and functionally related.

Cell-based analysis of CAD variants identifies individuals likely to benefit from uridine therapy
Francisco del Caño-Ochoa, Bobby G. Ng, Malak Abedalthagafi, Mohammed Almannai, Ronald D. Cohn, Gregory Costain, Orly Elpeleg, Henry Houlden, Ehsan Ghayoor Karimiani, Pengfei Liu, M. Chiara Manzini, Reza Maroofian, Michael Muriello, Ali Al-Otaibi, Hema Patel, Edvardson Shimon, V. Reid Sutton, Mehran Beiraghi Toosi, Lynne A. Wolfe, Jill A. Rosenfeld, Hudson H. Freeze, Santiago Ramón-Maiques

Purpose: Pathogenic autosomal recessive variants in CAD, encoding the multienzymatic protein initiating pyrimidine de novo biosynthesis, cause a severe inborn metabolic disorder treatable with a dietary supplement of uridine. This condition is difficult to diagnose given the large size of CAD with over 1000 missense variants and the nonspecific clinical presentation. We aimed to develop a reliable and discerning assay to assess the pathogenicity of CAD variants and to select affected individuals that might benefit from uridine therapy. Methods: Using CRISPR/Cas9, we generated a human CAD-knockout cell line that requires uridine supplements for survival. Transient transfection of the knockout cells with recombinant CAD restores growth in absence of uridine. This system determines missense variants that inactivate CAD and do not rescue the growth phenotype. Results: We identified 25 individuals with biallelic variants in CAD and a phenotype consistent with a CAD deficit. We used the CAD-knockout complementation assay to test a total of 34 variants, identifying 16 as deleterious for CAD activity. Combination of these pathogenic variants confirmed 11 subjects with a CAD deficit, for whom we describe the clinical phenotype. Conclusions: We designed a cell-based assay to test the pathogenicity of CAD variants, identifying 11 CAD-deficient individuals who could benefit from uridine therapy.

RNA-protein coevolution study of Gemin5 uncovers the role of the PXSS motif of RBS1 domain for RNA binding
Rosario Francisco-Velilla, Azman Embarc-Buh, Sergio Rangel-Guerrero, Sudipto Basu, Sudip Kundu, Encarnacion Martinez-Salas

Regulation of protein synthesis is an essential step of gene expression. This process is under the control of cis-acting RNA elements and trans-acting factors. Gemin5 is a multifunctional RNA-binding protein organized in distinct domains. The protein bears a non-canonical RNA-binding site, designated RBS1, at the C-terminal end. Among other cellular RNAs, the RBS1 region recognizes a sequence located within the coding region of Gemin5 mRNA, termed H12. Expression of RBS1 stimulates translation of RNA reporters carrying the H12 sequence, counteracting the negative effect of Gemin5 on global protein synthesis. A computational analysis of RBS1 protein and H12 RNA variability across the evolutionary scale predicts coevolving pairs of amino acids and nucleotides. RBS1 footprint and gel-shift assays indicated a positive correlation between the identified coevolving pairs and RNA-protein interaction. The coevolving residues of RBS1 contribute to the recognition of stem-loop SL1, an RNA structural element of H12 that contains the coevolving nucleotides. Indeed, RBS1 proteins carrying substitutions on the coevolving residues P1297 or S1299S1300, drastically reduced SL1-binding. Unlike the wild type RBS1 protein, expression of these mutant proteins in cells failed to enhance translation stimulation of mRNA reporters carrying the H12 sequence. Therefore, the PXSS motif within the RBS1 domain of Gemin5 and the RNA structural motif SL1 of its mRNA appears to play a key role in fine-tuning the expression level of this essential protein.

Molecular characterization and heterologous expression of two α-glucosidases from Metschnikowia spp, both producers of honey sugars
Martin Garcia-Gonzalez, Marina Minguet-Lobato, Francisco J. Plou, Maria Fernandez-Lobato

Background: α-Glucosidases are widely distributed enzymes with a varied substrate specificity that are traditionally used in biotechnological industries based on oligo- and polysaccharides as starting materials. According to amino acid sequence homology, α-glucosidases are included into two major families, GH13 and GH31. The members of family GH13 contain several α-glucosidases with confirmed hydrolytic activity on sucrose. Previously, a sucrose splitting activity from the nectar colonizing yeast Metschnikowia reukaufii which produced rare sugars with α-(1→1), α-(1→3) and α-(1→6) glycosidic linkages from sucrose was described. Results: In this study, genes codifying for α-glucosidases from the nectaries yeast M. gruessii and M. reukaufii were characterised and heterologously expressed in Escherichia coli for the first time. Recombinant proteins (Mg-αGlu and Mr-αGlu) were purified and biochemically analysed. Both enzymes mainly displayed hydrolytic activity towards sucrose, maltose and p-nitrophenyl-α-D-glucopyranoside. Structural analysis of these proteins allowed the identification of common features from the α-amylase family, in particular from glycoside hydrolases that belong to family GH13. The three acidic residues comprising the catalytic triad were identified and their relevance for the protein hydrolytic mechanism confirmed by site-directed mutagenesis. Recombinant enzymes produced oligosaccharides naturally present in honey employing sucrose as initial substrate and gave rise to mixtures with the same products profile (isomelezitose, trehalulose, erlose, melezitose, theanderose and esculose) previously obtained with M. reukaufii cell extracts. Furthermore, the same enzymatic activity was detected with its orthologous Mg-αGlu from M. gruessii. Interestingly, the isomelezitose amounts obtained in reactions mediated by the recombinant proteins, ~ 170 g/L, were the highest reported so far. Conclusions: Mg/Mr-αGlu were heterologously overproduced and their biochemical and structural characteristics analysed. The recombinant α-glucosidases displayed excellent properties in terms of mild reaction conditions, in addition to pH and thermal stability. Besides, the enzymes produced a rare mixture of hetero-gluco-oligosaccharides by transglucosylation, mainly isomelezitose and trehalulose. These compounds are natural constituents of honey which purification from this natural source is quite unviable, what make these enzymes very interesting for the biotechnological industry. Finally, it should be remarked that these sugars have potential applications as food additives due to their suitable sweetness, viscosity and humectant capacity.

NOTE! This site uses cookies and similar technologies.

If you not change browser settings, you agree to it. Learn more

I understand


What are cookies?

A cookie is a file that is downloaded to your computer when you access certain web pages. Cookies allow a web page, among other things, to store and retrieve information about the browsing habits of a user or their equipment and, depending on the information they contain and the way they use their equipment, they can be used to recognize the user.

Types of cookies

Classification of cookies is made according to a series of categories. However, it is necessary to take into account that the same cookie can be included in more than one category.

  1. Cookies according to the entity that manages them

    Depending on the entity that manages the computer or domain from which the cookies are sent and treat the data obtained, we can distinguish:

    • Own cookies: those that are sent to the user's terminal equipment from a computer or domain managed by the editor itself and from which the service requested by the user is provided.
    • Third party cookies: those that are sent to the user's terminal equipment from a computer or domain that is not managed by the publisher, but by another entity that processes the data obtained through the cookies. When cookies are installed from a computer or domain managed by the publisher itself, but the information collected through them is managed by a third party, they cannot be considered as own cookies.

  2. Cookies according to the period of time they remain activated

    Depending on the length of time that they remain activated in the terminal equipment, we can distinguish:

    • Session cookies: type of cookies designed to collect and store data while the user accesses a web page. They are usually used to store information that only is kept to provide the service requested by the user on a single occasion (e.g. a list of products purchased).
    • Persistent cookies: type of cookies in which the data is still stored in the terminal and can be accessed and processed during a period defined by the person responsible for the cookie, which can range from a few minutes to several years.

  3. Cookies according to their purpose

    Depending on the purpose for which the data obtained through cookies are processed, we can distinguish between:

    • Technical cookies: those that allow the user to navigate through a web page, platform or application and the use of different options or services that exist in it, such as controlling traffic and data communication, identifying the session, access to restricted access parts, remember the elements that make up an order, perform the purchase process of an order, make a registration or participation in an event, use security elements during navigation, store content for the broadcast videos or sound or share content through social networks.
    • Personalization cookies: those that allow the user to access the service with some predefined general characteristics based on a series of criteria in the user's terminal, such as the language, the type of browser through which the user accesses the service, the regional configuration from where you access the service, etc.
    • Analytical cookies: those that allow the person responsible for them to monitor and analyse the behaviour of the users of the websites to which they are linked. The information collected through this type of cookies is used in the measurement of the activity of the websites, applications or platforms, and for the elaboration of navigation profiles of the users of said sites, applications and platforms, in order to introduce improvements in the analysis of the data of use made by the users of the service.

Cookies used on our website

The CBMSO website uses Google Analytics. Google Analytics is a simple and easy to use tool that helps website owners to measure how users interact with the content of the site. You can consult more information about the cookies used by Google Analitycs in this link.

Acceptance of the Cookies Policy

The CBMSO assumes that you accept the use of cookies if you continue browsing, considering that it is a conscious and positive action from which the user's consent is inferred. In this regard, you are previously informed that such behaviour will be interpreted that you accept the installation and use of cookies.

Knowing this information, it is possible to carry out the following actions:

  • Accept cookies: if the user presses the acceptance button, this warning will not be displayed again when accessing any page of the portal.
  • Review the cookies policy: the user can access to this page in which the use of cookies is detailed, as well as links to modify the browser settings.

How to modify the configuration of cookies

Using your browser you can restrict, block or delete cookies from any web page. In each browser the process is different, here we show you links on this particular of the most used browsers: