CENTRO DE BIOLOGÍA MOLECULAR SEVERO OCHOA

Representative publications

Sergio B. Velarde, Alvaro Quevedo, Carlos Estella, Antonio Baonza

Damage in the nervous system induces a stereotypical response that is mediated by glial cells. Here, we use the eye disc of Drosophila melanogaster as a model to explore the mechanisms involved in promoting glial cell response after neuronal cell death induction. We demonstrate that these cells rapidly respond to neuronal apoptosis by increasing in number and undergoing morphological changes, which will ultimately grant them phagocytic abilities. We found that this glial response is controlled by the activity of Decapentaplegic (Dpp) and Hedgehog (Hh) signalling pathways. These pathways are activated after cell death induction, and their functions are necessary to induce glial cell proliferation and migration to the eye discs. The latter of these 2 processes depend on the function of the c-Jun N-terminal kinase (JNK) pathway, which is activated by Dpp signalling. We also present evidence that a similar mechanism controls glial response upon apoptosis induction in the leg discs, suggesting that our results uncover a mechanism that might be involved in controlling glial cells response to neuronal cell death in different regions of the peripheral nervous system (PNS).

Azman Embarc-Buh, Rosario Francisco-Velilla, Sergio Camero, José Manuel Pérez-Cañadillas, Encarnación Martínez-Salas

Gemin5 is a multifaceted RNA-binding protein that comprises distinct structural domains, including a WD40 and TPR-like for which the X-ray structure is known. In addition, the protein contains a non-canonical RNA-binding domain (RBS1) towards the C-terminus. To understand the RNA binding features of the RBS1 domain, we have characterized its structural characteristics by solution NMR linked to RNA-binding activity. Here we show that a short version of the RBS1 domain that retains the ability to interact with RNA is predominantly unfolded even in the presence of RNA. Furthermore, an exhaustive mutational analysis indicates the presence of an evolutionarily conserved motif enriched in R, S, W, and H residues, necessary to promote RNA-binding via π-π interactions. The combined results of NMR and RNA-binding on wild-type and mutant proteins highlight the importance of aromatic and arginine residues for RNA recognition by RBS1, revealing that the net charge and the π-amino acid density of this region of Gemin5 are key factors for RNA recognition.

Ugo Bastolla

The fatality rate of Covid-19 escalates with age and is larger in men than women. I show that these variations correlate strongly with the level of the viral receptor protein ACE2 in rat lungs, which is consistent with the still limited data on human ACE2. Surprisingly, lower receptor levels correlate with higher fatality. I propose two possible explanations of this negative correlation: First, a previous mathematical model predicts that the velocity of viral progression in the organism as a function of the receptor level has a maximum and declines for abundant receptor. Secondly, degradation of ACE2 by the virus may cause the runaway inflammatory response that characterizes severe CoViD-19. I present here a mathematical model that predicts the lethality as a function of ACE2 protein level based on the two above hypothesis. The model fits Covid-19 fatality rate across age and sex in three countries with high accuracy (http://www.w3.org/1998/Math/MathML" id="m1"><mrow><msup><mi>r</mi><mn>2</mn></msup><mo>&gt;</mo><mn>0.9</mn></mrow></math>" role="presentation">r2>0.9r2>0.9) under the hypothesis that the speed of viral progression in the infected organism is a decreasing function of the ACE2 level. Moreover, rescaling the fitted parameters by the ratio of the binding rates of the spike proteins of SARS-CoV and SARS-CoV-2 allows predicting the fatality rate of SARS-CoV across age and sex, thus linking the molecular and epidemiological levels.

Jon Gil-Ranedo, Carlos Gallego-García, José M Almendral

Cancer therapy urges targeting of malignant subsets within self-renewing heterogeneous stem cell populations. We dissect the genetic and functional heterogeneity of human glioblastoma stem cells (GSCs) within patients by their innate responses to non-pathogenic mouse parvoviruses that are tightly restrained by cellular physiology. GSC neurospheres accumulate assembled capsids but restrict viral NS1 cytotoxic protein expression by an innate PKR/eIF2α-P response counteractable by electric pulses. NS1 triggers a comprehensive DNA damage response involving cell-cycle arrest, neurosphere disorganization, and bystander disruption of GSC-derived brain tumor architecture in rodent models. GSCs and cancer cell lines permissive to parvovirus genome replication require p53-Ser15 phosphorylation (Pp53S15). NS1 expression is enhanced by exogeneous Pp53S15 induction but repressed by wtp53. Consistently, patient-specific GSC subpopulations harboring p53 gain-of-function mutants and/or Pp53S15 are selective viral targets. This study provides a molecular foundation for personalized biosafe viral therapies against devastating glioblastoma and other cancers with deregulated p53 signaling.

Patricia A. Calvo, María I. Martínez-Jiménez1, Marcos Díaz, Gorazd Stojkovic, Kazutoshi Kasho, Susana Guerra, Sjoerd Wanrooij, Juan Méndez and Luis Blanco

PrimPol is the second primase in human cells, the first with the ability to start DNA chains with dNTPs. PrimPol contributes to DNA damage tolerance by restarting DNA synthesis beyond stalling lesions, acting as a TLS primase. Multiple alignment of eukaryotic PrimPols allowed us to identify a highly conserved motif, WxxY near the invariant motif A, which contains two active site metal ligands in all members of the archeo-eukaryotic primase (AEP) superfamily. In vivo and in vitro analysis of single variants of the WFYY motif of human PrimPol demonstrated that the invariant Trp87 and Tyr90 residues are essential for both primase and polymerase activities, mainly due to their crucial role in binding incoming nucleotides. Accordingly, the human variant F88L, altering the WFYY motif, displayed reduced binding of incoming nucleotides, affecting its primase/polymerase activities especially during TLS reactions on UV-damaged DNA. Conversely, the Y89D mutation initially associated with High Myopia did not affect the ability to rescue stalled replication forks in human cells. Collectively, our data suggest that the WFYY motif has a fundamental role in stabilizing the incoming 3′-nucleotide, an essential requisite for both its primase and TLS abilities during replication fork restart.

Alberto Domingo López-Muñoz, Alberto Rastrojo, Rocío Martín, Antonio Alcamí

Herpes simplex virus type 1 and 2 (HSV-1 and HSV-2, respectively) are prevalent human pathogens of clinical relevance that establish long-life latency in the nervous system. They have been considered, along with the Herpesviridae family, to exhibit a low level of genetic diversity during viral replication. However, the high ability shown by these viruses to rapidly evolve under different selective pressures does not correlates with that presumed genetic stability. High-throughput sequencing has revealed that heterogeneous or plaque-purified populations of both serotypes contain a broad range of genetic diversity, in terms of number and frequency of minor genetic variants, both in vivo and in vitro. This is reminiscent of the quasispecies phenomenon traditionally associated with RNA viruses. Here, by plaque-purification of two selected viral clones of each viral subtype, we reduced the high level of genetic variability found in the original viral stocks, to more genetically homogeneous populations. After having deeply characterized the genetic diversity present in the purified viral clones as a high confidence baseline, we examined the generation of de novo genetic diversity under culture conditions. We found that both serotypes gradually increased the number of de novo minor variants, as well as their frequency, in two different cell types after just five and ten passages. Remarkably, HSV-2 populations displayed a much higher raise of nonconservative de novo minor variants than the HSV-1 counterparts. Most of these minor variants exhibited a very low frequency in the population, increasing their frequency over sequential passages. These new appeared minor variants largely impacted the coding diversity of HSV-2, and we found some genes more prone to harbor higher variability. These data show that herpesviruses generate de novo genetic diversity differentially under equal in vitro culture conditions. This might have contributed to the evolutionary divergence of HSV-1 and HSV-2 adapting to different anatomical niche, boosted by selective pressures found at each epithelial and neuronal tissue.

Elena Riera1, Daniel Pérez-Núñez, Raquel García-Belmonte, Lisa Miorin, Adolfo García-Sastre and Yolanda Revilla

African swine fever virus (ASFV) causes a serious disease in domestic pigs and wild boars and is currently expanding worldwide. No safe and efficacious vaccines against ASFV are available, which threats the swine industry worldwide. African swine fever virus (ASFV) is a complex dsDNA virus that displays multiple mechanisms to counteract the host innate immune response, whose efficacy might determine the different degrees of virulence displayed by attenuated and virulent ASFV strains. Here we report that infection with both virulent Arm/07/CBM/c2 and attenuated NH/P68 strains prevents interferon-stimulated gene (ISG) expression in interferon (IFN)-treated cells by counteracting the JAK/STAT pathway. This inhibition results in an impaired nuclear translocation of the interferon-stimulated gene factor 3 (ISGF3) complex, as well as in the proteasome-dependent STAT2 degradation and caspase 3-dependent STAT1 cleavage. The existence of two independent mechanisms of control of the JAK/STAT pathway, suggests the importance of preventing this pathway for successful viral replication. As ASFV virulence is likely associated with the efficacy of the IFN signaling inhibitory mechanisms, a better understanding of these IFN antagonistic properties may lead to new strategies to control this devastating pig disease.

 
Rebecca Herzog, Juan Manuel Sacnun, Guadalupe González-Mateo, Maria Bartosova, Katarzyna Bialas, Anja Wagner, Markus Unterwurzacher, Isabel J Sobieszek, Lisa Daniel-Fischer, Krisztina Rusai, Lucía Pascual-Antón, Klaus Kaczirek, Andreas Vychytil, Claus Peter Schmitt, Manuel López-Cabrera, Seth L Alper, Christoph Aufricht, Klaus Kratochwill

Life-saving renal replacement therapy by peritoneal dialysis (PD) is limited in use and duration by progressive impairment of peritoneal membrane integrity and homeostasis. Preservation of peritoneal membrane integrity during chronic PD remains an urgent but long unmet medical need. PD therapy failure results from peritoneal fibrosis and angiogenesis caused by hypertonic PD fluid (PDF)-induced mesothelial cytotoxicity. However, the pathophysiological mechanisms involved are incompletely understood, limiting identification of therapeutic targets. We report that addition of lithium chloride (LiCl) to PDF is a translatable intervention to counteract PDF-induced mesothelial cell death, peritoneal membrane fibrosis, and angiogenesis. LiCl improved mesothelial cell survival in a dose-dependent manner. Combined transcriptomic and proteomic characterization of icodextrin-based PDF-induced mesothelial cell injury identified αB-crystallin as the mesothelial cell protein most consistently counter-regulated by LiCl. In vitro and in vivo overexpression of αB-crystallin triggered a fibrotic phenotype and PDF-like up-regulation of vascular endothelial growth factor (VEGF), CD31-positive cells, and TGF-β-independent activation of TGF-β-regulated targets. In contrast, αB-crystallin knockdown decreased VEGF expression and early mesothelial-to-mesenchymal transition. LiCl reduced VEGF release and counteracted fibrosis- and angiogenesis-associated processes. αB-crystallin in patient-derived mesothelial cells was specifically up-regulated in response to PDF and increased in peritoneal mesothelial cells from biopsies from pediatric patients undergoing PD, correlating with markers of angiogenesis and fibrosis. LiCl-supplemented PDF promoted morphological preservation of mesothelial cells and the submesothelial zone in a mouse model of chronic PD. Thus, repurposing LiCl as a cytoprotective PDF additive may offer a translatable therapeutic strategy to combat peritoneal membrane deterioration during PD therapy.

 
Eléanor Simon, Carlos Jiménez-Jiménez, Irene Seijo-Barandiarán, Gustavo Aguilar, David Sánchez-Hernández, Adrián Aguirre-Tamaral, Laura González-Méndez, Pedro Ripoll, Isabel Guerrero

The conserved family of Hedgehog (Hh) signaling proteins plays a key role in cell-cell communication in development, tissue repair, and cancer progression, inducing distinct concentration-dependent responses in target cells located at short and long distances. One simple mechanism for long distance dispersal of the lipid modified Hh is the direct contact between cell membranes through filopodia-like structures known as cytonemes. Here we have analyzed in Drosophila the interaction between the glypicans Dally and Dally-like protein, necessary for Hh signaling, and the adhesion molecules and Hh coreceptors Ihog and Boi. We describe that glypicans are required to maintain the levels of Ihog, but not of Boi. We also show that the overexpression of Ihog, but not of Boi, regulates cytoneme dynamics through their interaction with glypicans, the Ihog fibronectin III domains being essential for this interaction. Our data suggest that the regulation of glypicans over Hh signaling is specifically given by their interaction with Ihog in cytonemes. Contrary to previous data, we also show that there is no redundancy of Ihog and Boi functions in Hh gradient formation, being Ihog, but not of Boi, essential for the long-range gradient.

 
Sofía Cabezudo, Maria Sanz-Flores, Alvaro Caballero, Inmaculada Tasset, Elena Rebollo, Antonio Diaz, Anna M. Aragay, Ana María Cuervo, Federico Mayor Jr & Catalina Ribas

The mTORC1 node plays a major role in autophagy modulation. We report a role of the ubiquitous Gαq subunit, a known transducer of plasma membrane G protein-coupled receptors signaling, as a core modulator of mTORC1 and autophagy. Cells lacking Gαq/11 display higher basal autophagy, enhanced autophagy induction upon different types of nutrient stress along with a decreased mTORC1 activation status. They are also unable to reactivate mTORC1 and thus inactivate ongoing autophagy upon nutrient recovery. Conversely, stimulation of Gαq/11 promotes sustained mTORC1 pathway activation and reversion of autophagy promoted by serum or amino acids removal. Gαq is present in autophagic compartments and lysosomes and is part of the mTORC1 multi-molecular complex, contributing to its assembly and activation via its nutrient status-sensitive interaction with p62, which displays features of a Gαq effector. Gαq emerges as a central regulator of the autophagy machinery required to maintain cellular homeostasis upon nutrient fluctuations.

 
Vega García-Escudero, Daniel Ruiz-Gabarre, Ricardo Gargini, Mar Pérez, Esther García, Raquel Cuadros, Ivó H. Hernández, Jorge R. Cabrera, Ramón García-Escudero, José J. Lucas, Félix Hernández & Jesús Ávila

Tauopathies, including Alzheimer’s disease (AD) and frontotemporal lobar degeneration with Tau pathology (FTLD-tau), are a group of neurodegenerative disorders characterized by Tau hyperphosphorylation. Post-translational modifications of Tau such as phosphorylation and truncation have been demonstrated to be an essential step in the molecular pathogenesis of these tauopathies. In this work, we demonstrate the existence of a new, human-specific truncated form of Tau generated by intron 12 retention in human neuroblastoma cells and, to a higher extent, in human RNA brain samples, using qPCR and further confirming the results on a larger database of human RNA-seq samples. Diminished protein levels of this new Tau isoform are found by Westernblotting in Alzheimer’s patients’ brains (Braak I n = 3; Braak II n = 6, Braak III n = 3, Braak IV n = 1, and Braak V n = 10, Braak VI n = 8) with respect to non-demented control subjects (n = 9), suggesting that the lack of this truncated isoform may play an important role in the pathology. This new Tau isoform exhibits similar post-transcriptional modifications by phosphorylation and affinity for microtubule binding, but more interestingly, is less prone to aggregate than other Tau isoforms. Finally, we present evidence suggesting this new Tau isoform could be linked to the inhibition of GSK3β, which would mediate intron 12 retention by modulating the serine/arginine rich splicing factor 2 (SRSF2). Our results show the existence of an important new isoform of Tau and suggest that further research on this less aggregation-prone Tau may help to develop future therapies for Alzheimer’s disease and other tauopathies.

 
Sara Picó, Alberto Parras, María Santos-Galindo, Julia Pose-Utrilla, Margarita Castro, Enrique Fraga, Ivó H Hernández, Ainara Elorza, Héctor Anta, Nan Wang, Laura Martí-Sánchez, Eulàlia Belloc, Paula Garcia-Esparcia, Juan J Garrido, Isidro Ferrer, Daniel Macías-García, Pablo Mir, Rafael Artuch, Belén Pérez, Félix Hernández, Pilar Navarro, José Luis López-Sendón, Teresa Iglesias, X William Yang, Raúl Méndez, José J Lucas

Huntington’s disease (HD) is a hereditary neurodegenerative disorder of the basal ganglia for which disease-modifyingHuntington’s disease (HD) is a hereditary neurodegenerative disorder of the basal ganglia for which disease-modifyingtreatments are not yet available. Although gene-silencing therapies are currently being tested, furthermolecular mechanisms must be explored to identify druggable targets for HD. Cytoplasmic polyadenylation elementbinding proteins 1 to 4 (CPEB1 to CPEB4) are RNA binding proteins that repress or activate translation ofCPE-containing transcripts by shortening or elongating their poly(A) tail. Here, we found increased CPEB1 anddecreased CPEB4 protein in the striatum of patients and mouse models with HD. This correlated with a reprogrammingof polyadenylation in 17.3% of the transcriptome, markedly affecting neurodegeneration-associatedgenes including PSEN1, MAPT, SNCA, LRRK2, PINK1, DJ1, SOD1, TARDBP, FUS, and HTT and suggesting a new molecularmechanism in neurodegenerative disease etiology. We found decreased protein content of top deadenylatedtranscripts, including striatal atrophy–linked genes not previously related to HD, such as KTN1 and the easilydruggable SLC19A3 (the ThTr2 thiamine transporter). Mutations in SLC19A3 cause biotin-thiamine–responsivebasal ganglia disease (BTBGD), a striatal disorder that can be treated with a combination of biotin and thiamine.Similar to patients with BTBGD, patients with HD demonstrated decreased thiamine in the cerebrospinal fluid.Furthermore, patients and mice with HD showed decreased striatal concentrations of thiamine pyrophosphate(TPP), the metabolically active form of thiamine. High-dose biotin and thiamine treatment prevented TPP deficiencyin HD mice and attenuated the radiological, neuropathological, and motor HD-like phenotypes, revealingan easily implementable therapy that might benefit patients with HD.

NOTE! This site uses cookies and similar technologies.

If you not change browser settings, you agree to it. Learn more

I understand

COOKIES POLICY

What are cookies?

A cookie is a file that is downloaded to your computer when you access certain web pages. Cookies allow a web page, among other things, to store and retrieve information about the browsing habits of a user or their equipment and, depending on the information they contain and the way they use their equipment, they can be used to recognize the user.

Types of cookies

Classification of cookies is made according to a series of categories. However, it is necessary to take into account that the same cookie can be included in more than one category.

  1. Cookies according to the entity that manages them

    Depending on the entity that manages the computer or domain from which the cookies are sent and treat the data obtained, we can distinguish:

    • Own cookies: those that are sent to the user's terminal equipment from a computer or domain managed by the editor itself and from which the service requested by the user is provided.
    • Third party cookies: those that are sent to the user's terminal equipment from a computer or domain that is not managed by the publisher, but by another entity that processes the data obtained through the cookies. When cookies are installed from a computer or domain managed by the publisher itself, but the information collected through them is managed by a third party, they cannot be considered as own cookies.

  2. Cookies according to the period of time they remain activated

    Depending on the length of time that they remain activated in the terminal equipment, we can distinguish:

    • Session cookies: type of cookies designed to collect and store data while the user accesses a web page. They are usually used to store information that only is kept to provide the service requested by the user on a single occasion (e.g. a list of products purchased).
    • Persistent cookies: type of cookies in which the data is still stored in the terminal and can be accessed and processed during a period defined by the person responsible for the cookie, which can range from a few minutes to several years.

  3. Cookies according to their purpose

    Depending on the purpose for which the data obtained through cookies are processed, we can distinguish between:

    • Technical cookies: those that allow the user to navigate through a web page, platform or application and the use of different options or services that exist in it, such as controlling traffic and data communication, identifying the session, access to restricted access parts, remember the elements that make up an order, perform the purchase process of an order, make a registration or participation in an event, use security elements during navigation, store content for the broadcast videos or sound or share content through social networks.
    • Personalization cookies: those that allow the user to access the service with some predefined general characteristics based on a series of criteria in the user's terminal, such as the language, the type of browser through which the user accesses the service, the regional configuration from where you access the service, etc.
    • Analytical cookies: those that allow the person responsible for them to monitor and analyse the behaviour of the users of the websites to which they are linked. The information collected through this type of cookies is used in the measurement of the activity of the websites, applications or platforms, and for the elaboration of navigation profiles of the users of said sites, applications and platforms, in order to introduce improvements in the analysis of the data of use made by the users of the service.

Cookies used on our website

The CBMSO website uses Google Analytics. Google Analytics is a simple and easy to use tool that helps website owners to measure how users interact with the content of the site. You can consult more information about the cookies used by Google Analitycs in this link.

Acceptance of the Cookies Policy

The CBMSO assumes that you accept the use of cookies if you continue browsing, considering that it is a conscious and positive action from which the user's consent is inferred. In this regard, you are previously informed that such behaviour will be interpreted that you accept the installation and use of cookies.

Knowing this information, it is possible to carry out the following actions:

  • Accept cookies: if the user presses the acceptance button, this warning will not be displayed again when accessing any page of the portal.
  • Review the cookies policy: the user can access to this page in which the use of cookies is detailed, as well as links to modify the browser settings.

How to modify the configuration of cookies

Using your browser you can restrict, block or delete cookies from any web page. In each browser the process is different, here we show you links on this particular of the most used browsers:

fondoeuropeo125.png
logoministerio.png
comunidadmadrid.png
excelencia125.png
european-research-council-hermenegildo-garcia-group.jpg
logo-agenda-2030.jpg
logotipo-framonareces.jpg
fa_santander_pv_pos_rgb.jpg